
Finding Multidimensional Patterns in Multidimensional Time
Series

Emil Laftchiev
Mitsubishi Electric Research Labs

Cambridge, MA
laftchiev@merl.com

Yuchao Liu
University of California San Diego

La Jolla, CA
yul085@ucsd.edu

ABSTRACT
Exact pattern matching is a method of localizing arbitrarily sized
patterns in time series data. To date, the problem of exact pattern
matching has only been fully addressed for one query pattern on
one time series with a single best match location. This paper ad-
dresses the broader problem of finding the top-K pattern matches
for a multidimensional time series pattern in a large multidimen-
sional time series. The problem is addressed in two stages using an
algorithm that combines ideas from the fields of data mining and
bi-clustering. The first stage of the algorithm addresses selecting
the dimension subset that matches the query pattern and locating
the matching pattern. The second stage of the algorithm addresses
the problem of finding the top-K matches of the pattern in the
selected time series dimensions. The performance of the proposed
algorithm is evaluated against the best single dimensional exact
pattern matching algorithm on real and simulated data.

CCS CONCEPTS
• Information systems→ Data mining;

KEYWORDS
multidimensional time series, similarity search, dimension reduc-
tion, top-K search
ACM Reference Format:
Emil Laftchiev and Yuchao Liu. 2018. Finding Multidimensional Patterns in
Multidimensional Time Series. In Proceedings of 4th SIGKDD Workshop on
Mining and Learning from Time Series (KDD Workshop on MiLeTS’18). ACM,
New York, NY, USA, Article 4, 9 pages.

1 INTRODUCTION
The exponential growth of time series data that are collected via
cheap and widely available sensors is revolutionizing the scientific
field of time series data mining with applications in predictive
maintenance and anomaly detection. A important problem in this
field is the localization of abnormal time series patterns or time
series subsequences.

In many applications the shape of these abnormal patterns is
known, yet it is difficult to locate these patterns in very long time
series. For example, suppose that an engineermonitoring a plant can
recognize an anomalous pattern from a prior failure. To learn from
the prior failure, the engineer may try to localize the anomalous
pattern in stored time series data from the plant sensors. However,
because the plant log is long, sometimes stretching months or years,
it is difficult for the engineer to find the exact time at which the
prior failure occurred.

To address the problem of localizing one pattern in one long
time series, researchers have often used classical data mining tools

like feature extraction and indexing. Both fail as the data size scales.
Feature extraction fails because the uniqueness of the extracted
features is strongly dependent on the signal-to-noise ratio of the
data and feature uniqueness diminishes as the data set grows [9].
Indexing fails because the growth of the index structure becomes
unwieldy as the size of the data grows.

Thus researchers have focused on methods of exact pattern lo-
calization. The UCR suite [11] is an example of a scalable algorithm
that is capable of localizing patterns in very long time series. The
key to this approach is realizing that the best metric to compare
two subsequences is Dynamic Time Warping (DTW) [12] and that
this metric can be approximated by lower bounds to speed up the
localization process. Because these lower bounds increase in tight-
ness as their computational complexity scales, nesting them leads
to a significant reduction in the computational cost of searching
for a pattern.

To date, the problem of fast exact pattern matching for time
series data has only been fully explored in the one dimensional
case. That is, for the localization of one pattern within one time
series. Thus there are two interesting extensions of this problem
that are explored in this paper. First, it is of interest to explore the
localization of a known multidimensional pattern in a multidimen-
sional time series. That is, the localization of several patterns with
a common time window across several time series. Second, it is of
interest to find the top-K matches of a known pattern in one and
multidimensional time series data.

Searching for multidimensional patterns is important because
while a single pattern may appear at multiple instances on one time
series, it’s more likely that an anomaly can be uniquely identified
when multiple patterns across multiple time series coincide. As
an example, consider the Inertial Measurement Unit (IMU) data
shown in Fig. 1a. Such data can be readily collected from mobile
phones, and fitness trackers. The figure shows six representative
time series. The top three time series show estimates of bias on
the measurements, and the bottom three time series show angle
measurements. Note that in the first 150,000 data points the device
appears to be moving in a predictable pattern, and in the next
450,000 data points the device appears to have settled into a steady
state. Hence, the normal behavior for this device is steady, but
with times of periodic motion. Importantly, during periodic motion,
the device sometimes records bias errors in its measurement. A
multidimensional subsequence containing the spike in bias error is
shown Query Subsequence 1 in Fig. 1b.

It is important to note that the anomalous multidimensional pat-
tern shown in Query Subsequence 1 has three patterns whose start
points occur simultaneously across multiple dimensions. However,
the patterns may not have such coinciding start points but may



KDD Workshop on MiLeTS’18, August 20, 2018, London, UK E. Laftchiev et al.

(a) Six time series recorded from an IMU. (b) Anomalies in IMU Bias Measurements.

Figure 1: Real IMU Data

generally share the same time window. This is shown in Query
Subsequence 2 in Fig. 1b. To illustrate this point the experiments in
this paper use both Query Subsequence 1 and Query Subsequence
2.

Also note that in Fig. 1 the number of query dimensions is smaller
than the number of data dimensions. This is because the dimen-
sions of an anomalous multidimensional pattern are often smaller
than the total number of available dimensions. Thus any algorithm
localizing a multidimensional pattern may also need to act as a
dimension reducing algorithm.

1.1 Paper Goal and Contributions
Formally, given a multidimensional time series of dimension M
with length N , and a multidimensional query of dimensionm ≤ M
with length n, where n ≪ N , locate K time intervals [t , t +n]k that
most closely match the given multidimensional query pattern.

This paper proposes a new algorithm to solve the problem of
finding a multidimensional pattern in a multidimensional time se-
ries. The algorithm is based on [11] and a bi-clustering algorithm
named Largest Average Submatrix (LAS) [15]. The combined al-
gorithm is further extended to find the top-K matches. This paper
makes the following contributions:

• A novel distance measure that evaluates the closeness be-
tween multidimensional time series queries and data se-
quences in the presence of arbitrary dimension alignment.
• An approximation for the proposed distance measure to
reduce its computational complexity and speed up sequential
search.
• An iterative algorithm to find the pattern match in the case
when there are more data time series sequences than queries.
This algorithm is an efficient time series selection method.
• An algorithm for finding the top-K matches in the one and
multidimensional cases.

2 PAPER NOTATION
The following is the notation used throughout this paper.

• Q : The collection of query patterns, denoted as a sequence of
patterns {q1, . . . ,qm }. Here referred to as amultidimensional
query;
• qi : The i-th pattern in a query;

• P : The collection of candidate matching patterns extracted
using a sliding window in time series data, denoted as a
sequence of patterns {p1, . . . ,pm }. Here referred to as a mul-
tidimensional candidate pattern match;
• m: The total number of query patterns;
• n: The length of a single query pattern;
• M : The total number of data time series;
• N : The length of a single data time series;
• [M]: The integer set {1, . . . ,M }. Similarly we have [m], etc;
• X : The collection of data time series. Here referred to as a
multidimensional time series;
• Xi : The i-th data time series. Xi (t ) stands for the value of
time series i at time stamp t ;
• X |I : The collection of {Xi } with i ∈ I ;
• X |t : The data of X within the time window [t , t + n], which
is the collection of time series {Xi (t ), . . . ,Xi (t + n)}, with
i ∈ [M];
• X |I,t : The data of X |I within the time window [t , t + n],
which is the collection of time series {Xi (t ), . . . ,Xi (t + n)},
with i ∈ I ;

2.1 Algorithm Assumptions
The algorithm presented in this paper makes 2 assumptions:
• The subsequence which matches each of the query patterns
appears at the same time stamp in the data across the multi-
dimensional time series. Formally, there exists a pair (I , t )
such that X |I,t is a close match to Q .
• The query patterns on each dimension are distinguishable
with each other (DTW(qi ,qj ) is well bounded away from
zero for all pairs of (i, j )).

The first assumption simply states that there exists a time win-
dow, that is common among a subset of the time series dimensions,
that contains the query subsequences of interest. The second as-
sumption states that the patterns on separate query dimensions
are distinct and their normalized sum does not equal zero. This
assumption facilitates distance approximations that reduce compu-
tational complexity, and enables us to propose a top-K localization
algorithm capable of finding patterns for one and multidimensional
data. In addition, the uniqueness of patterns helps to simplify chal-
lenging combinatorial problems that are discussed in the sections
to come.



Finding Multidimensional Patterns in Multidimensional Time Series KDD Workshop on MiLeTS’18, August 20, 2018, London, UK

3 RELATEDWORK AND BACKGROUND
3.1 Dynamic Time Warping
Dynamic time warping (DTW) is an algorithm measuring the simi-
larity between two time series that is particularly useful in detecting
similarities when the patterns are stretched, compressed, skewed,
or slightly misshaped, i.e. the DTW will provide a good distance
measure of the intuitive understandings that humans have when
comparing patterns. Unfortunately DTW has polynomial computa-
tional complexity in the size of the time series pattern. To search
for a pattern of fixed length subsequence in a large time series, it
is necessary to examine as many fixed windows as the length of
the time series. Therefore an exhaustive search for a pattern match
using the DTW has a very high computational cost.

A large body of work has been dedicated to speeding up the DTW
computation. An example of this can be found in [13, 14] which
aim to approximate the DTW distance efficiently and accurately by
eliminating unpromising matching profiles in the DTW matching
matrix. Another example is the UCR Suite [11]. This algorithm is
an optimized approach to leveraging all prior research in DTW
search speed optimization. Here lower bounds, combined with
early abandonment, are nested with respect to their computational
complexity. Low computational complexity bounds are computed
first, and the most complex lower bounds are computed last. The
final calculation is the optimized DTW. Two specific lower bounds
are argued to be optimal in [11] via the creation of a Pareto front
between bound tightness and bound computational complexity: the
Kim lower bound [8] and the Keogh lower bound [4, 7].

3.2 Evaluating the DTW in Multiple
Dimensions

There are three methods of extending the DTW to multiple dimen-
sions: match multiple time series using the same warping path in-
side the DTW matrix, a (weighted) sum of the DTW distance along
multiple dimensions, and DTW using multidimensional points. The
first case, when the DTWwarping path is optimized over all dimen-
sions of the multidimensional time series is proposed by Holt et. al.
[17]. The second and third cases are proposed by Shokoohi-Yekta
et. al. [16], and then later by Górecki and Luczak [6] who build a
classifier using a weighted sum of the two DTW candidates.

3.3 Bi-Clustering
Bi-clustering is a widely-studied problem in the fields of bioinfor-
matics and statistics. In this field, a large data matrix is observed and
the goal is to find a subset of row indexes and a subset of column
indexes such that the submatrix constructed by these indexes, has
an anomaly or useful information. A common example is an interac-
tion map X with chromosomes and different environments, where
each entry Xi j represents the expression level of chromosome i
under environment j. In this example, it is desirable to identify
a subset of chromosomes that are over-expressed in certain envi-
ronments (e.g. identify cancer genes and its associated cancerous
environments).

The bi-clustering problem and popular algorithms that solve it
can be found in Cheng et. al. [3] and Pontes et. al. [10]. A widely
applied algorithm in bi-clustering is the Largest Average Submatrix

(LAS) algorithm, developed by Shabalin et. al. [15], and tested on
real and simulated data in [1, 2, 15].

The LAS algorithm aims to find the submatrix with the largest
entry average among all the submatrices given the number of rows
and columns. To find this submatrix, the algorithm randomly selects
a fixed set of rows from among the available matrix rows. The
selected rows are summed column wise. The sums are sorted, and
largest column sums (known number) are identified. Having found
the largest column sums, the column indices are fixed. Next a row
sum is performed along the fixed columns. Based on the resulting
row sum, a new set of rows is selected with several largest row
sums. This iteration is repeated until no update is performed on
the row and column indices with respect to the last iteration.

The LAS algorithm has several known drawbacks. First, the
random initialization of the algorithm makes convergence analy-
sis difficult. The best work analyzing this approach to date is by
Gamarnik and Li [5]. Second, in some cases the algorithm converges
to local minima where the objective error is high. In such cases the
algorithm is re-initialized and a new answer is obtained. Conver-
gence to local minima is sufficiently rare that this re-initialization
can be automated via a tunable threshold on the algorithm out-
put error without significantly affecting the average algorithm run
time.

4 ALGORITHM DEVELOPMENT
The first step in developing a localization algorithm is to develop a
generalized sequence matching distance. In this paper, no knowl-
edge is assumed about the permutation of the time series with
respect to the query subsequence dimensions. This removes a sig-
nificant assumption made in prior work [6, 16, 17].

Thus the focus here is to propose a new distance metric for
multidimensional patterns that is effective in its discovery power
(a term frequently used in the statistics community), the ability to
findmatching patterns and discard erroneousmatches, and effective
with respect to the computational requirements.

4.1 A Distance Metric Invariant to
Permutations

The matching metric should satisfy the following properties:
• d (Q, P ) ≥ 0. d (Q, P ) = 0 if and only if P is equivalent to Q
up to a row permutation.
• d (Q, P ) = d (Q, P ′) = d (Q ′, P ), where P ′ and Q ′ denote row
permutations of P and Q , respectively.
• d (Q, P ) is close to 0 when P and Q consist of similar pat-
terns but never exactly 0 due to measurement noise and
approximate query specification.

The first two properties imply that information regarding the
permutation of the time series with respect to the query will be
unknown a-priori. The third property acknowledges that the query
pattern will only be known up to a certain inherent noise level
in the time series data. Given these stipulations, we propose the
following distance measure which is built on the DTW distance
measure between two time series patterns in one dimension.

d (Q, P ) = min
π ∈Π

m∑
i=1

DTW(qi ,pπ (i ) ). (1)



KDD Workshop on MiLeTS’18, August 20, 2018, London, UK E. Laftchiev et al.

Here qi and pi have the same length which means we cannot match
the query patterns to more than one dimension and v.v., meaning a
single pattern in either the query or the candidate matching loca-
tion cannot be matched to more than one dimension in the other.
The set Π is the set of all possible permutations of the dimensions
[m], i.e all possible permutations of the sequence {1, . . . ,m}. The
permutations are denoted with π and the result of the permuta-
tion is {π (1), . . . ,π (m)}. This definition satisfies the requirement
that the distance be neutral with respect to the permutations of
the dimensions because it sequentially searches through all pos-
sible permutations to find the most likely ordering. The optimal
permutation is returned with the distance.

4.2 Approximate the distance
The distance measure defined in eq. (1) has maximum discovery
power because it must yield the smallest possible distance for any
pair of multidimensional patterns. However, this distance has a
high computational cost. For example, for m query dimensions
each calculation of this distance would requirem ∗m! calculations
each with complexity O(n2). Similar to [11], we want to develop
approximations to speed up a sliding window search with this
distance. We propose the following approximation is proposed:

d̂ (Q, P ) =
m∑
i=1

min
j

DTW(qi ,pj ). (2)

The approximated distance in eq. (2) is a trade-off of discovery
power for computational efficiency. Here the worst case number
of calculations is on the order of m2, a fraction of the original
computational complexity. However, because distance is found
discretely over each pattern dimension, some dimensions may be
over matched, and thus d̂ is a lower bound of d , i.e. for any Q

and P , d̂ (Q, P ) ≤ d (Q, P ). This means the discovery power of this
approximated distance is reduced.

As an example, note that the calculation in eq. (2) moves the sum-
mation to the left of the minimization term, then for each row of the
query, the dimension index of the candidate pattern match which
minimizes the DTW distance is determined. Importantly, the candi-
date pattern dimension chosen to correspond for one dimension of
the query is not eliminated when searching over the next dimension
of the query. The lack of elimination of chosen dimensions leads to
the lower bounding nature of the approximation.

Concretely, consider the case wherem = 2 and the query con-
sists of two identical subsequences each on its own dimension.
The candidate matching sequence P has one dimension on which
the time series sequence matches the query sequence well, and
another dimension which is significantly different from the query
sequence. On this proposed match, the original distance measure,
d , will return a distance greater than zero because the second di-
mension of P will necessarily be included in the final matching
permutation, i.e. permutations such as {1,1} or {2,2} are not allowed.
However, the relaxed distance d̂ will return a distance close to zero
because both query dimensions will simply choose the candidate
sequence dimension that matches to them. This example motivates
the requirement that query patterns are each distinguishable from
one another, i.e. the distances between queries are well bounded

away from zero, such that the approximated distance provides a
meaningful lower bound to the true proposed distance.

To discern the accuracy of the lower bound, a second approxi-
mation, d̃ , is proposed. This approximation is an upper bound to
equation (1), and is a greedy approximation to the proposed dis-
tance. The greedy search is shown in Alg. 1. Alg. 1 begins by

Algorithm 1 Calculate d̃
Input: Query sequences Q , time series sequences P
Output: d̃ (Q, P )

Initialization:
J ← [m]
d̃ (Q, P ) ← 0
LOOP Process:
for i = 1 tom do
minD ← ∞
for j ∈ J do
d ← DTW(qi ,pj )
if (d < minD) then
r ← j
minD ← d

end if
end for
Remove r from J
d̃ (Q, P ) ← d̃ (Q, P ) +minD

end for
return d̃ (Q, P )

finding the best match to the first query pattern, q1 among pj . This
match is denoted as pj1 . Then the next best match between the
second query pattern, q2, and the rest of pj excluding pj1 is found.
The procedure is iterated until all dimensions of the query pattern
are matched. The determined matching distance is the cumulative
sum of the distances found at each step in the match above. The
drawback of this bound is that it is dependent on the original order
of the query which means it can be loose. Both approximations, d̂
and d̃ are aimed at improving the speed of sliding window search
by reducing the combinatorial cost of the problem.

5 MAIN ALGORITHM
Recall the stated problem, given a multidimensional query pattern
Q of sizem with length n in each dimension, and multidimensional
time series X with length N withM component dimensions (time
series), we want to find a location within the time series (time
stamp) t∗, and a subset of the time series I∗ of [M] with cardinality
m, such that

d (Q,X |I ∗,t ∗ ) = min
I,t

d (Q,X |I,t ). (3)

Here |I | = m, X |I,t is of the same time length and of the same
number of dimensions as Q . The minimum is found jointly over
all subsets of [M] that are of size m and all possible time index
locations in the time series.

This problem is similar to the bi-clustering problem because the
multidimensional time series X can be viewed as a large matrix
with rows corresponding to the time series dimension, and columns
corresponding to the time series time indices. Then each X |I,t



Finding Multidimensional Patterns in Multidimensional Time Series KDD Workshop on MiLeTS’18, August 20, 2018, London, UK

is a submatrix with row size m, column size n, and the problem
presented in this paper is to locate the submatrix that is closest to
the query matrix Q . This can be solved using an iterative strategy.

(1) Fix I∗, find t∗ corresponding to mint d (Q,X |I,t );
(2) Fix t , find a new I∗ corresponding to minI d (Q,X |I,t );
(3) Repeat step 2 until the subset I∗ no longer changes.

The algorithm has converged when the subset I∗ does not change
between successive iterations. This algorithm returns the subset and
order of [M] which corresponds to the query pattern dimensions.
To reduce the computational cost, we employ the approximations
of the matching distance discussed in Sec. 4: the lower bound to d ,
d̂ , and the upper bound to d , d̃ . These approximations are inserted
as follows.

(1) Fix I∗, find t∗ corresponding to mint d̂ (Q,X |I,t );
(2) Fix t , find a new I∗ corresponding to minI d̃ (Q,X |I,t );
(3) Repeat step 2 until the subset I∗ no longer changes.

5.1 Step 1: Searching for Pattern Location on a
Subset of Dimensions

The first step is to identify the correct window, t , within a sub-
set of the multidimensional time series dimensions that minimize
d̂ (Q,X |I,t ). To find t , use a sliding window and for each window
evaluate d̂ (Q,X |I,t ) where t represents the starting time index and
the length of the pattern ranges from t to t + N − 1. The window
with the minimum value of d̂ is the optimal time index t∗ for this
subset of time series.

The computational complexity of finding t∗ using the DTW time
series distance can be further reduced by cascading lower bounds
[11]. Building on prior results that showed a Pareto front between
lower bound tightness and computational complexity, here we
extend two bounds into the multidimensional case: the Kim bound
[8] and the Keogh bound [4, 7]. The Kim bound is a lower bound
of d̂ (Q, P ) and is extended as,

LBKimMulti (Q, P ) =
m∑
i=1

min
j

LBKim (qi ,pj ). (4)

The Keogh bound accounts for points in both patterns that deviate
more than an envelope about one pattern defined by the Sakoe-
Chiba DTW band width. The Keogh bound can be extended as,

LBKeoдhMulti (Q, P ) =
m∑
i=1

min
j

LBKeoдh (qi ,pj ). (5)

To cascade these multidimensional bounds first calculate the ex-
tended Kim bound (eq. (4)). If the result exceeds the best matching
distance found so far then eliminate this window. If the result is
smaller than the best matching distance so far, then calculate the
extended Keogh bound (eq. (5)). If this result is greater than the best
matching distance so far, then discard this window as a possible
match. If the distance is smaller than the best matching distance so
far, then we perform the DTW calculation. For any of these calcu-
lations, if the partially calculated distance exceeds the best DTW
matching distance found so far, then discard the current matching
window. This algorithm is shown in Alg. 2.

Algorithm 2 Algorithm for time stamp search
Input: Query sequences Q , time series sequences X
Output: t∗

Initialization:
1: Do z-normalize by row on Q
2: Construct upper and lower envelope by row on Q for calculat-

ing LBKeoдh
3: minD ← ∞
4: lowerBnd ← 0

LOOP Process:
5: for t = 1 to N − n do
6: lowerBnd ← LBKimMulit (Q,X |t )
7: if (lowerBnd < minD) then
8: lowerBnd ← LBKeoдhMulti (Q,X |t )
9: if (lowerBnd < minD) then
10: lowerBnd ← d̂ (Q,X |t )
11: if (lowerBnd < minD) then
12: t∗ ← t
13: minD ← lowerBnd
14: end if
15: end if
16: end if
17: lowerBnd ← 0
18: end for
19: return t∗

5.2 Step 2: Iterating the Search Dimensions
The first matching time instant t∗ is determined on a randomly
chosen subset ofm dimensions of the multidimensional time series.
After t∗ is determined, the dimension subset choice is revisited so
that a better subset can be found. The choice of dimension subset
is revisited after each iteration of the first step until the subset of
dimensions does not change between successive iterations.

More concretely, for all iterations following the initialization, the
next set of time series is chosen by minimizing the approximated
distance shown in Alg. 1. This means that for a fixed t on a given set
of I∗, we find a new set I∗ that corresponds tominI d̃ (Q,X |I,t ). Here
it is important to optimize d̃ instead of d̂ because the calculation of
d̃ returns a valid permutation of the time series dimensions, while
d̂ may not. The selection process is shown in Alg. 3.

Here note that the convergence time of Alg. 3 depends on the
order of the dimensions of the query pattern. However, this can
be mitigated through implementation of optimizations that are
discussed in Sec. 7.

5.3 Combined Algorithm
The combined algorithm shown inAlg. 4 is a hill-climbing algorithm
that searches for a minimum matching distance of the sequences.
As noted by the bi-clustering community, this type of algorithm can
become stuck in local objective minimums. However, in the case
of pattern matching, this is usually not the case when the pattern
is discernible in the data. Moreover, recalling that we are looking
for an exact pattern match, we expect the output distance of the
algorithm to be very small. In contrast when a local minimum is



KDD Workshop on MiLeTS’18, August 20, 2018, London, UK E. Laftchiev et al.

Algorithm 3 Algorithm for query match
Input: Query sequences Q , time series sequences X
Output: Integer set I

Initialization:
1: Do z-normalize by dimension on Q
2: Do z-normalize by dimension on X
3: I ← ∅
4: J ← [M]

LOOP Process:
5: for i = 1 tom do
6: minD ← ∞
7: for j ∈ J do
8: d ← DTW(qi ,x j )
9: if (d < minD) then
10: r ← j
11: minD ← d
12: end if
13: end for
14: Append I with r
15: Remove r from J
16: end for
17: return I

found, the resulting output distance is large. Thus a threshold can
be set to detect any outliers that can be found.

To understand Alg. 4, begin with the following intuition. Assume
that there is a close pattern match in the time series dimensions
denoted by the index set I∗. Then suppose a random subset I is cho-
sen to perform the initial pattern search. If there is a partial overlap
between I∗ and I in the search, the location of the subsequence
which is returned before the start of the second iteration should
be reasonably close to the final location of the matching pattern.
The reason for this is that the partial match of the pattern should
return a relatively smaller distance than non-matching instances
in the selected time series. If this is the case, then the dimension
choosing algorithm, Alg. 3 will choose the correct I∗ for the next
pattern search iteration. When this happens the second pattern
search executed using Alg. 2 will complete the search since the
same pattern dimensions will be identified.

When I and I∗ have no overlap, the search is looking for a non-
existing pattern match in the time series set indexed by I , and
will find some arbitrary location, and Alg. 3 will be equivalent
to choosing the next set of indexes randomly, making it possible
that the next set of indexes and I∗ will overlap in the following
iteration. In practice, one may use the following strategy to ensure
an initial overlap between I and I∗. Run the algorithm sequentially
with initialization I1 = {1, . . . ,m}, I2 = {m + 1, . . . , 2m}, etc, such
that the initializations span allM indexes. Compare the resulting
d̃ associated with each result, and return the set of indices whose
output resulted in the smallest d̃ . Iterate the time stamp search on
the set of indices with the smallest d̃ and complete the algorithm.

6 SEARCHING TOP-k MATCHES
The proposed algorithm is capable of finding the best multidimen-
sional matching subsequence within a multidimensional time series.

Algorithm 4 Aggregate algorithm
Input: Query sequences Q , time series sequences X
Output: Integer set I , time stamp t

Initialization:
1: Do z-normalize by row on Q
2: Construct upper and lower envelope by row on Q for calculat-

ing LBKeoдh
3: Samplem numbers without replacement from [M] to construct

Iout
4: I ← ∅

LOOP Process
5: while I , Iout do
6: I = Iout
7: Run Algorithm 1 on X |I to get t∗
8: Run Algorithm 2 on X |t to get Iout
9: end while
10: return t , I

Importantly, this algorithm is able to find this pattern when the
data dimensions exceed the query dimensions. In essence, this ap-
proach offers the capability of dimension reduction in addition to
the ability for pattern matching.

We now propose to extend the developed algorithm to find the
top-K matches. This task is needed in predictive maintenance and
anomaly detection applications because similar matches can pro-
vide context for the state of the system or the anomaly. For example,
note the IMU data presented in Fig. 1(a) and the three dimensional
pattern that occurs when bias spikes in Fig. 1(b). Recall that bias
spikes a total of ten times in this time series. Finding and comparing
all ten time instants provides an operator a richer set of information
than the single best match to a sample bias spike.

However, finding the top-K matches is not trivial. The naive so-
lution is to iterate the best match algorithm K times, removing the
determined time sequence after each run. This solution is not satis-
factory because it scales the computational complexity of pattern
detection by a factor of K.

6.1 One dimensional case
To develop a more sophisticated approach to finding the top-K
matches, we begin with the one dimensional case. In this case the
best algorithm for pattern matching is the UCR suite [11], a natural
building block for a top-K match searching algorithm. Because the
goal is to find the top-K matches without finding repeating the
algorithm K times, then we need to implement a new method of
keeping an ordered list of the K best matches found so far. This list
must be updated each time a new match is discovered. Here we
choose to maintain this list via a priority queue. A priority queue is
a data type where each element is assigned a priority with respect to
the other elements in the queue. Priority queues can be depicted as
a tree, where each parent node in the tree is larger than its children
nodes. The top node is thus the largest, and in the case of pattern
matching, the largest observed distance so far.

Embedding a priority queue into the algorithm proposed dra-
matically reduces the computational cost of finding K matches.
There are two reasons for this computational improvement. First,



Finding Multidimensional Patterns in Multidimensional Time Series KDD Workshop on MiLeTS’18, August 20, 2018, London, UK

the cost of referencing the top element in a priority queue is O(1),
thus by placing the Kth distance at the top of the priority queue,
we are make the comparison cost to be the same as that of the
original algorithm. Second, insertion into the priority queue has a
computational cost of O(logK ) which is minimal as long as K ≪ N .

The proposed approach is a very computationally efficientmethod
of finding the top-K distance matches in a time series. However, due
to the warping capability of the DTW, the top-K distance matches
are not the top-K qualitative matches in the time series. To find the
top-K qualitative matches in the time series we add a pre-processing
step to the priority queue. In this step we track the trend in the
DTW distance as the sliding window changes positions. A decreas-
ing trend indicates that a matching location is being approached
and an increasing trend indicates that the matching location has
been passed. If a matching location has been passed and the match-
ing distance is smaller then the Kth best distance to date, then
the new matching location is inserted into the queue. If not, the
pre-processing is continued. This pre-processing step increases the
quality of the matches produced by the proposed algorithm and
reduces the computational complexity of the approach because it
prevents the unnecessary re-ordering of the queue as the sliding
window approaches a match location.

6.2 Extending the Top-K Matching Algorithm
to Multiple Dimensions

Nowwe want to extend the algorithm to findK pairs of time stamps
and index sets (I1, t1), . . . , (IK , tK ) such that d (Q,X |Ii ,ti , i ) ∀i ≤ K
are the K smallest DTW matching distances in the data set. To
facilitate the algorithm two key assumptions must hold. First, the
top-k matches are found in the same subset of time series in the
data (that is, Ii = I∗, for all i ≤ k). In essence, the dimensions
cannot change for matches within the top-K. However, the match
dimension permutation does not need to be the same for every
match. Second, the query patterns (dimensions) as not identical and
opposite to one another. That is, if the queries are added together,
the resulting time series is not close to zero (DTW(

∑
i qi , 0) is well

above 0) or otherwise below the noise floor of the signal. This second
assumption allows us to further speed up matching by reducing the
need to solve a combinatorial problem in the match dimensions.

If the query pattern, and the desired K matches satisfy these
assumptions, then we propose the following algorithm to find the
top-K matches in a multidimensional time series. First, add the
query dimensions, collapsing the multidimensional pattern into
one dimension. Second, add the chosen data sequences together,
collapsing them-dimensional time series into a single dimension. Fi-
nally apply a modified one-dimensional top-K matching algorithm
in the preceding section.

Here the algorithm implementation is augmented in two impor-
tant ways; first multiple data sequences can only be added after
they are normalized. This is because sequences of different magni-
tudes may distort the results and provide inaccurate shape results.
Second, only two nested lower bounds are used in the algorithm.
The first bound is the Kim bound, described in previous sections,
and the second is the Keogh bound, again described in the prior
sections. The reverse Keogh bound is not used. This is because
the reverse Keogh bound requires a recalculation of an envelope

over the candidate matching data sequence. This combined with
the continuous data normalization, which is necessary when the
time series are added, significantly reduces the search speed of the
algorithm. Removing this lower bound did not significantly impact
the accuracy or speed of the algorithm as will be shown in the
results section.

7 NUMERICAL EXPERIMENTS
This section demonstrates the performance of both the best match
algorithm and the best match algorithm extended to find the top-K
matches. Each algorithm’s performance is evaluated against the
performance of the UCR suite, the best one-dimensional pattern
matching algorithm. Here the one dimensional algorithm is run on
each dimension and the solution is found via post-processing of
the identified pattern matches. In the top-K setting, the algorithm
is run K times on each time series, each time removing the located
match before the new run. The top-K matches are then found via
post processing.

Two data sets are used in the experiments, the first is the real
data set collected from an IMU and depicted in Fig. 1. The second
is a synthetic data set comprised of six randomly generated series.
The synthetic data set is seeded with search patterns on 3 of the
6 dimensions. These search patterns are inserted in five random
locations and with five different Signal-to-Noise Ratios (SNRs).

Using synthetic data allows us to test the algorithms more ex-
tensively for two reasons. First, given that the UCR suite is deter-
ministic, running the algorithm once on our real data set does not
provide clear evidence of the generalizability of the results. How-
ever, running the UCR suite on randomly generated data that is
generated before each run provides a notion of the variance in the
performance that might be observed over a large set of real data
time series. Second, the SNR of the collected experimental data
is fixed. Experimenting with synthetic data allows us to vary the
pattern SNR and observe the effect of increasing noise on the top-K
match search.

7.1 Data and Query Generation
The synthetic data set contains six times series each containing
500,000 (N ) data points. The time series are generated using a
Gaussian random number generator, seeded with a known seed
for each experiment, where the Gaussian distribution is defined as
N (0, 1).

To detect a known pattern within this data, a three dimensional
pattern is inserted. Each dimension of the pattern is added to one
of the six time series at five random locations. The patterns are
described as follows and shown in Fig. 2.

Query Pattern 1 = (x − 5)2, 0 ≤ x ≤ 10 (6)
Query Pattern 2 = sin(0.75x ), 0 ≤ x ≤ 10 (7)
Query Pattern 3 = 1 − 2I(x ≤ 5), 0 ≤ x ≤ 10 (8)

In these equations I(·) is the indicator function. Because only the
query shape is of interest the shapes are defined over a convenient
interval of (0, 10), but sub-sampled into n data points during inser-
tion. In the experiments below n = 100. In order to produce ranked
matches and to test the robustness of the matching algorithm to
noise, each query is inserted with a sequentially worse SNR. Each



KDD Workshop on MiLeTS’18, August 20, 2018, London, UK E. Laftchiev et al.

Figure 2: Dimensions of the Query Pattern Plotted Together.

SNR is achieved by first normalizing the query pattern and then
scaling it to achieve the desired SNR. For example, scaling the nor-
malized query pattern by

√
2 is equivalent to setting the SNR to

3dB. The inserted patterns in the synthetic data are scaled to SNRs
10dB, 8dB, 6dB, 5dB, and 3dB which correspond to scale factors

√
9,

√
6,
√
4,
√
3, and

√
2, respectively.

Figure 3: Top match query and 5th best query plotted in the
time series

The lowest SNR was chosen empirically such that when search-
ing for the top 5 matches, the 5th match would be found with 100%
accuracy in any random sample of 100 experiments. No SNR was
chosen that would make the patterns plainly visible to humans
(as is the case with the IMU data). The corrupting effect of the
Gaussian data points on the queries is shown in Fig. 3. In this figure
the match with the best SNR (10dB) is plotted on the left, and the
worst SNR (3dB) is plotted in all dimensions on the right. Note that
when plotted on the same vertical scale, the degradation in SNR is
obvious from 10dB to 3dB. In fact, it may even be surprising that
the 3dB query pattern is identifiable by the top-K search algorithm.

7.2 Multidimensional Pattern Search on
Synthetic Data

The results of the algorithm performance for all experiments on
synthetic data are presented in Fig. 41. Fig. 4a shows the experiment
search time for the best multidimensional pattern match when the
query dimension is the same as the data dimension, M = m = 3
and the SNR of the query pattern is 6dB. Here note that the median
search time of the proposed algorithm was 3.55 seconds while the
extended UCR suite has a median run time of 17.3 seconds.
1 Experiments performed on a Windows 10 PC with 16GB RAM, an Intel i7-4770/3.40
GHz CPU, and a 1TB 7200 RPM HDD.

Figure 4: Proposed Algorithm Results Compared to the Ex-
haustive Search.

Increasing the data dimensions to M = 6 in Fig.4b shows the
dimension reduction capabilities of the algorithm. In particular,
when the m = 3 and M = 6, the median run time to obtain the
pattern match was 8.36 seconds while the exhaustive search has
median convergence time of 37.39 seconds. Notably when poorly
initialized the proposed algorithm has a run time as long as 20
seconds. In both figures, the search pattern is always correctly
found by the algorithm.

The greater spread of the experiment results sheds light on the
issue of algorithm initialization discussed earlier in the paper. Given
that there are six time series from which to choose and only three
query patterns, then it is possible for the initial choice of time
series to contain no matching patterns. In such a case, the algorithm
becomes trapped in the afore mentioned local minimum. To address
this a data dependent matching distance threshold was set, such
that if the final matching result is larger than this threshold, then
the result is deemed erroneous and the algorithm is re-initialized
with a new random set of rows. The extended run time here reflects
the occurrence of such a re-initialization.

Re-initialization is an acceptable solution when the relative size
ofm andM is comparable. In the case wherem ≪ M an alternate
method may be preferable. The alternate method is to divide [M]
into subsets {1, . . . ,m}, {m + 1, . . . , 2m}, . . . and run the search
algorithm in parallel on each subset. The results can then be re-
aggregated, and the subsets containing the smallest matching dis-
tances can be further explored.

7.3 Top-k Matches Numerical Experiments
The third experiment with results shown in Fig. 4c demonstrates
the performance of the top-K matching algorithm. From the figure
we note that on average the top-K matching algorithm has a search
time of 6.72 seconds. Note here that the ordering of the identified
matches was 100% correct. In comparison, the extended UCR suite
search had a median search time of 79.92 seconds. Thus the pro-
posed algorithm has an improved search time of approximately 12
times when compared to simply extending 1-dimensional methods.

7.4 Total Search Time Experiments
Putting the algorithms together, the combined algorithm is demon-
strated in Fig. 4d. The results are again compared to an exhaustive
search that extends the one dimensional method. The figure shows
that the median run time of the combined top-K multidimensional
pattern matching algorithm is 14.23 seconds, while the combined



Finding Multidimensional Patterns in Multidimensional Time Series KDD Workshop on MiLeTS’18, August 20, 2018, London, UK

median run time of the extended one dimensional is 171.97 seconds.
This is a 12 times improvement in the median search times.

7.5 Multidimensional Pattern Search on Real
IMU Data

To provide real world context for this work, we now test the al-
gorithms on the IMU data shown in Fig. 1. We perform two ex-
periments, one experiment where three anomalous patterns occur
simultaneously and another with three concurrent subsequences of
data of interest. The results of these experiments are summarized
in Table 7.5.

The first experiment is to find the best match to the pattern
seen in Fig. 1b, Query Subsequence 1. Here the subsequence have a
length of 300 and has a dimension ofm=3. The combined algorithm
finds this match within a multidimensional time series of dimension
M=6 in 11 seconds. The extended 1-dimensional method is finds
the same match in 50 seconds.

To show that the patterns need not begin simultaneously, we
find the top 5 matches for Query Subsequence 2 shown in Fig. 1b.
Note here that this subsequence is much larger at 1000 data points
in length. For this size subsequence, the proposed algorithm was
able to: determine the appropriate matching dimensions, and find
the top 5 patterns, in 338 seconds, while the extended 1-dimensional
method was able to find the same top 5 matches in 553 seconds.

Experiment
Type

Proposed
Algorithm

Extended
UCR Suite

Query
Length

Best Match
3/6

11s 50s 300

Top 5
Matches

338s 553s 1000

These experiments show, that the algorithms proposed herein
are capable of finding the anomalous bias measurement spikes in
Query Subsequence 1 in Fig. 1b, as well as larger subsequences that
describe the system condition such as Query Subsequence 2 in Fig.
1b. Furthermore, these experiments show that the computational
advantage of the proposed algorithm is clear even as the query size
grows to 1000 data points. Thus the proposed algorithm provides
an effective method of: detecting concurrent anomalous patterns,
detecting concurrent subsequences of interest in amultidimensional
time series, and dimension reduction of multidimensional time
series.

8 CONCLUSION
This paper addresses the problem of finding the top-K matches to a
multidimensional query pattern in a multidimensional time series
data set. The presented algorithms leverage a new proposed dis-
tance function, two computational approximations of the distance
function, a novel algorithm framework that iteratively searches for
the correct time series dimensions and pattern location, and an in-
novative algorithm extension that allows the identification of top-K
matches with one data pass. The resulting combined algorithm is
tested on two data sets, a real IMU data set, and a synthetic data set
of Gaussian noise with inserted search patterns. Using the real data
set we show the applicability of the approach for anomaly detection
and condition monitoring. Using the synthetic data set we show the
ability of the algorithm to detect multiple matching subsequences

in the correct order in poor SNR. The results are compared to the
trivial extension of 1-dimensional methods.

REFERENCES
[1] Ery Arias-Castro and Yuchao Liu. 2017. Distribution-free detection of a submatrix.

Journal of Multivariate Analysis 156 (2017), 29–38.
[2] Cristina Butucea, Yuri I Ingster, et al. 2013. Detection of a sparse submatrix of a

high-dimensional noisy matrix. Bernoulli 19, 5B (2013), 2652–2688.
[3] Yizong Cheng and George M Church. 2000. Biclustering of expression data.. In

Ismb, Vol. 8. 93–103.
[4] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn

Keogh. 2008. Querying and mining of time series data: experimental comparison
of representations and distance measures. Proceedings of the VLDB Endowment 1,
2 (2008), 1542–1552.

[5] D. Gamarnik and Q. Li. [n. d.]. Finding a Large Submatrix of a Gaussian Random
Matrix. ArXiv e-prints ([n. d.]). arXiv:math.PR/1602.08529

[6] Tomasz Górecki and Maciej Łuczak. 2015. Multivariate time series classifica-
tion with parametric derivative dynamic time warping. Expert Systems with
Applications 42, 5 (2015), 2305–2312.

[7] Eamonn Keogh, Li Wei, Xiaopeng Xi, Sang-Hee Lee, and Michail Vlachos. 2006.
LB_Keogh supports exact indexing of shapes under rotation invariance with
arbitrary representations and distance measures. In Proceedings of the 32nd inter-
national conference on Very large data bases. VLDB Endowment, 882–893.

[8] Sang-Wook Kim, Sanghyun Park, and Wesley W Chu. 2001. An index-based ap-
proach for similarity search supporting time warping in large sequence databases.
In Data Engineering, 2001. Proceedings. 17th International Conference on. IEEE,
607–614.

[9] Emil Laftchiev. 2015. Robust dynamical model-based data representations and
structuring of time series data for in-sequence localization. PhD dissertation. The
Pennsylvania State University.

[10] Beatriz Pontes, Raúl Giráldez, and Jesús S Aguilar-Ruiz. 2015. Biclustering on
expression data: A review. Journal of biomedical informatics 57 (2015), 163–180.

[11] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
BrandonWestover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching
and mining trillions of time series subsequences under dynamic time warping.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 262–270.

[12] Chotirat Ann Ratanamahatana and Eamonn Keogh. 2004. Making time-series
classification more accurate using learned constraints. In Proceedings of the 2004
SIAM International Conference on Data Mining. SIAM, 11–22.

[13] Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. 2005. FTW:
fast similarity search under the time warping distance. In Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 326–337.

[14] Stan Salvador and Philip Chan. 2007. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analysis 11, 5 (2007), 561–580.

[15] Andrey A Shabalin, Victor J Weigman, Charles M Perou, and Andrew B Nobel.
2009. Finding large average submatrices in high dimensional data. The Annals of
Applied Statistics (2009), 985–1012.

[16] Mohammad Shokoohi-Yekta, Jun Wang, and Eamonn Keogh. 2015. On the non-
trivial generalization of dynamic time warping to the multi-dimensional case.
In Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM,
289–297.

[17] Gineke A Ten Holt, Marcel JT Reinders, and EA Hendriks. 2007. Multi-
dimensional dynamic time warping for gesture recognition. In Thirteenth annual
conference of the Advanced School for Computing and Imaging, Vol. 300.

http://arxiv.org/abs/math.PR/1602.08529

	Abstract
	1 Introduction
	1.1 Paper Goal and Contributions

	2 Paper Notation
	2.1 Algorithm Assumptions

	3 Related work and background
	3.1 Dynamic Time Warping
	3.2 Evaluating the DTW in Multiple Dimensions
	3.3 Bi-Clustering

	4 Algorithm Development
	4.1 A Distance Metric Invariant to Permutations
	4.2 Approximate the distance

	5 Main algorithm
	5.1 Step 1: Searching for Pattern Location on a Subset of Dimensions
	5.2 Step 2: Iterating the Search Dimensions
	5.3 Combined Algorithm

	6 Searching Top-k matches
	6.1 One dimensional case
	6.2 Extending the Top-K Matching Algorithm to Multiple Dimensions

	7 Numerical Experiments
	7.1 Data and Query Generation
	7.2 Multidimensional Pattern Search on Synthetic Data
	7.3 Top-k Matches Numerical Experiments
	7.4 Total Search Time Experiments
	7.5 Multidimensional Pattern Search on Real IMU Data

	8 Conclusion
	References

