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ABSTRACT
In this paper, we present and evaluate methods for pre-
dicting critical increase in manufacturing scrap rate of au-
tomotive electronic products. Along with information on
processes such as maintenance cycles, we analyze the sen-
sor time series of the so-called transfer molding process, in
which the electronic product is packaged into plastic for pro-
tection. Production data are organized in a two level hier-
archy of the individual parts and of the sequence of parts.
Since the main goal is to predict and warn about the future
state of the process, we designed a training and prediction
framework over certain production cycles. By using sensor
and other information, we adapt known time series classifi-
cation methods to predict increase in scrap rate in the near
future. By using three months of manufacturing time series,
we evaluate both feature based and dynamic time warping
based methods that are capable of fusing a large number of
production time series. As a main conclusion, we may warn
the operators of increase in failures with an AUC above 0.7
by combining multiple approaches in our final classifier en-
semble.

1. INTRODUCTION
Smart factories are considered the next industrial revolu-

tion [21] with the main promise that monitoring the sensor
data of manufacturing processes real time, we may predict
and mitigate failures in the production process [11]. The
difficulty of predicting industrial processes lie in the com-
plex structure of the available data. Sensor information from
manufacturing is richer compared to typical time series data,
since information is organized hierarchically into individual
products, leadframes, charges, work shifts, cleaning cycles,
etc.

In this paper, we address transfer molding, in which elec-
tronic products are packaged in plastic to protect from ex-
ternal damages. During the process, multiple pressure and
temperature sensor time series are recorded for each individ-
ual product. Finally all these data are arranged in series of
the entire product lifetime, segmented by different units of
production driven by cleaning cycles, possibly several times
interrupted for maintenance and calibration of the molding
machine.

Our main target is to reduce the number of failed prod-
ucts during the molding process. At first glance, the so-
lution could be modeling individual product failure based

on its time series. While such models may serve for root
cause analysis, their output is meaningless, since we will al-
ready know if the product failed just minutes after molding.
Instead, we focus on predicting the scrap rate in longer seg-
ments of the manufacturing process.

In order to warn the operators in case of anticipated pro-
duction problems, our goal is to predict the increase in scrap
rate at certain process cycle starting points. More precisely,
whenever the machine goes through cleaning and other pos-
sible maintenance and calibration steps, we apply our mod-
els to the data of the the next charge, a block of products
detailed in Section 1.1. We train based on the data of these
first charges immediately after cleaning. The classification
target is whether the scrap rate is increased above certain
threshold in the following charges. Note that evaluation
metrics based on the scrap rate itself e.g. squared error are
less meaningful, as the scrap rate normally changes little
compared to past charges.

We predict increase in scrap rates by a variety of simi-
larity and feature based time series methods. The first and
most important step is feature engineering of the set of time
series: in the few minutes it takes to produce an individual
product, 500 sensor measurements are taken, which are then
organized hierarchically in time based on process cycles. We
take 50 characteristic time points for each individual prod-
uct and form 50 time series, where each point corresponds to
a product. We compute statistics such as mean, minimum,
maximum, variance and derivatives, as well as dynamic time
warping (DTW) distance [10] from past production cycles.
We use nearest neighbor, SVM [20] and gradient boosted
trees (GBT) [6] for prediction.

The observed performance of the methods is summarized
as follows. Models based on features of past scrap rates per-
form very well, however these methods conclude the fact that
if the recent scrap rate is high and we observe a lower rate
in the present, then it is likely to increase. Since warnings
in periods of high scrap rates give no new information to the
operators, we consider scrap rate features a baseline. We in-
dicate these in our measurements, but do not otherwise use
or combine. The main models are based on support vector
regression over time series statistics and 2-nearest-neighbors
over DTW. These methods perform similarly, and usually
better than the scrap rate baseline. The strongest method
is obtained by taking a weighted linear combination of the
two model scores. The combination outperformed the base-
line in all our measurements. Surprisingly, GBT shows weak



Figure 1: Cross-section of a molded part.
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Figure 2: Main steps the assembly process.

performance on all our feature sets.
The paper is organized as follows. In Section 1.1, we de-

tail the transfer molding process. Section 2 describes the
available data, Section 3 the framework of our experiments,
Section 4 the feature engineering procedure, Section 5 the
time series classification methods and Section 6 summarizes
the results of our experiments. Finally, related results are
summarized in Section 7.

1.1 Transfer Molding
Transfer molding is one among a number of technolo-

gies that protect automotive electronic products from exter-
nal environment (heat, moisture, pressure, vibration). The
semiconductor components are packaged using epoxy mold-
ing compound (EMC). The schematic cross-section of the
automotive electronic part of our consideration is shown in
Fig. 1.

Main steps of the assembly process are illustrated in
Fig. 2. First, semiconductor components are soldered on the
copper substrates (heat sinks) with reflow soldering. In the
next cleaning step, the products are washed with solvents in
order to remove flux residues. In the next step, the compo-
nents are connected by wire bonding. From these first three
steps, we only consider washing as it has measurable effect
on product quality. Data on soldering and bonding will be
ignored for now.

In the main transfer molding step, the product is pack-
aged using transfer molding by an automold machine. The
machine molds several products at once, and the production
is organized into units with no change in the production pa-
rameters. In order to understand the structure of the mea-
surements, next we describe the production as summarized
in Fig. 3.

The machine has four presses with two cavities in each
press. A shot is the smallest unit of production involving
one press. Data from the presses differ even if they operate
simultaneously. In one shot, one leadframe per cavity is
produced, each of which has three products fixed on them.

Figure 3: Organization of the products on lead-
frames, charges, cleaning cycles.

Figure 4: Transfer molding process steps. The im-
age shows a single cavity of one press.

Hence in one shot, two leadframes of altogether six products
are molded, and these have the exact same data recorded.

Leadframes are organized into charges of continuous op-
eration when no production parameters are changed. One
charge contains 96 leadframes with 288 products altogether.
Approximately 10 charges are produced daily in three shifts,
but the line is used for producing other products as well,
hence our data is not continuous in time.

The process steps of transfer molding are summarized in
Fig. 4. (a) The leadframe (containing the heat sinks and
the components) is placed in the preheated mold; (b) the
mold is closed, and the EMC pellets are fed into the tool;
(c) the plunger starts to move, and the cavity is filled with
melted EMC. After the plunger stops, the EMC is cured
under pressure; (d) after curing, the mold is opened.

The machine is cleaned regularly after around 4–5 charges
by making a shot with conditioner pellets. Before and af-
ter cleaning, the machine is idle for several hours, which
gives a natural segmentation of the process. Also, changes
in scrap rate are expected after the idle periods, either sim-
ply because of the possible contamination that remains after
cleaning, or of other maintenance operations in the idle pe-
riod that may affect quality.

After molding, the products are inspected for failures. In-
spection may be by microscopic pictures of cross sections,



Figure 5: Timeline of a cleaning cycle: between two machine cleanings, four charges were produced (Charge
0-3). The first charge F after machine cleaning is observed. The scrap rate of the charge F is denoted by
sF . The prediction targets the relative increase of the scrap rate in the next N charges until cleaning. The
average scrap rate of N charges is denoted by sN .

or, as in our experiment, by a non-destructive way using
scanning acoustic microscope (SAM). At this station, the
different failures on the parts are counted and recorded (e.g.
upper/bottom cracks, delamination, and voids that we de-
scribe later). Further steps of the manufacturing (PMC,
milling, trim and form, electrical tests) are not considered
in our research.

Molding parameters. Transfer molding is done on high
temperature, and the molding time is few minutes. The
other important parameter to set is the pressure on the
plunger. While the plunger is moving in the first part of
step (c) in Fig. 4, the plunger position is controlled. During
the curing, both duration and plunger pressure is preset to
a constant. The typical shape of the time series recorded
when molding a leadframe is shown in Fig. 6.

Failure types. Typical failure types of transfer molding
are voids (air inside the EMC), delamination (air between
substrate and EMC, or components and EMC), and cracks.
The root cause may lie in the design of the part (e.g. molding
material cannot fill fully the cavity because of the geometry),
or in inappropriate parameters of the process (e.g. too fast
or too slow curing, wrong temperature or pressure settings).

In our research, we will predict the rate of delamination.
Simulation of delamination based on physical models is well
studied [19,23]. These simulations are made in the product
development phase in order to find the manufacturing pa-
rameters which minimize the chance for delamination. Our
model is developed to be used in production, the analysis is
data driven and we do not build upon the physical models
of transfer molding.

2. DATA
For our research, full manufacturing data of the assem-

bly line was collected for three months. In a discontinu-
ous operation involving maintenance and different products
manufactured, approximately 30, 000 leadframes of the same
product were produced, which we analyze in this paper. In
this section, we describe the structure and the variables of
the data, which are summarized in Table 1.

Process cycles are defined as periods to predict potential
increase in scrap rate, as shown in Fig. 5. A process cycle is
a unit of observation consisting of the charges between two
machine cleaning steps. We expect changes in behavior after
these idle periods of the machine. To gather information on
the current state of the machine, we measure all parameters

Process step Data
Washing time elapsed between washing and molding

bath quality
Molding timestamp

transfer graphs
shot count

press ID
tool position

tool ID
temperature measurements

mold materaial and conditioner lot number
Inspecion number of delaminations

Table 1: Parts of the data and the process steps
where they were recorded.

of the leadframes F in the first charge after cleaning. Our
aim is to design a system that warns if scrap rate increases
in the subsequent charges N . Since we consider each press
separately, we have 164 process cycles, each of which will be
used for giving a prediction on F and evaluating on N .

Washing related features are time elapsed between wash-
ing and molding, and cleaning bath quality that is expressed
as the number of hours elapsed since the last washing bath
change.

Transfer graphs. The time series of measurements recorded
during molding of a leadframe are often called transfer graphs.
The studied machine records three transfer graphs of 500
measurements for each shot. These are the position of the
plunger, pressure (calculated from force measurements on
the plunger) and vacuum, see Fig. 6.

An important phase of molding is the time period when
the plunger moves, and the EMC is flowing. We will refer to
the pressure measurements 1− 50 which were made during
this time as filling pressure.

Other transfer molding process data consists of time-
stamp of molding, raw material (mold compound and con-
ditioner) lot number, temperature measurements, and shot
count since the last cleaning. The position where the lead-
frame was molded inside the machine is described by press
ID and tool position, since the machine has four presses with
two cavities (tool positions) in each. Tools inside the cavities
are sometimes changed, this can be tracked by the variable
tool ID.

Result of the visual inspection is the number of de-



Figure 6: Transfer graphs: three time series of 500
measurement points recorded during the transfer
molding process. Scales on the y axes are hidden
for confidentiality reasons.

tected delaminations for all parts. From this, we will only
use the rate of delaminated leadframes in certain charges or
group of charges, and these rates are referred to simply as
scrap rates later on.

3. TRAINING AND EVALUATION
Since manufacturing data is identical for the products on

the same leadframe, we consider them as one record. A
leadframe is defined to be scrap if it has at least one delam-
ination. For a set of leadframes L, the scrap rate sL is the
fraction of leadframes with at least one delamination.

The average scrap rates of the data can be seen in Fig. 7.
Based on these the data can be roughly separated into three
intervals over time. The first interval has the lowest, while
the last has the highest average scrap rate.

In order to qualify the increase in scrap rate, we define
both an additive and a multiplicative constant. For very
low scrap rates, a relative increase may have no practical
relevance and the case may be similar for small additive
changes in case of high scrap rates. With the notion of first
and next charges F and N , the target label of the charge
is 1 if sN − 1.05 · sF > 0.02. We selected the parameters
1.05 and t = 0.02 such that the positive target has business
relevance and occurs both for the good and bad production
phases, see Fig. 7.

The purpose of our testing procedure is to simulate a
warning system based on different classifiers. Recall that a
process cycle consists of charges of the same press between
two cleaning steps. For each process cycle, we train on data
of earlier ones. The model is applied to data of the first
charge F and evaluated on N subsequent charges before the
next cleaning, as seen in Fig. 5. We evaluate by computing

Figure 7: Top: Scrap rate of the charges follow-
ing the machine cleaning (sF ). Middle: Scrap
rates of the charges where the increase of the
scrap rate should be predicted (sN). Bot-
tom: The function sN − 1.05 · sF , which is used
to generate the binary target with a thresh-
old, in our case 0.02 (horizontal line).
Charges are in production order, the scale for scrap
rates is hidden for confidentiality reasons.

the raw prediction score of the models, which we consider
as rank for computing the AUC of the procedure. By the
mathematical properties of AUC [5], we obtain the proba-
bility that a random process cycle with increased scrap rate
is prioritized higher for warning than another random one
with no increase. Tthis way the warning threshold may be
left as a free parameter for the machine operator.

4. FEATURE ENGINEERING
Recall the hierarchical arrangement of products into shots,

charges and cleaning cycles as summarized in Figs. 3 and 5.
The organization of the production makes our feature en-
gineering task more cumbersome than in typical time series
analysis tasks. Recall that a process cycle consists of charges
between two machine cleaning steps, and in one charge of
identical machine configuration, 48 shots of 96 leadframes
with altogether 288 products are molded. Our most im-
portant task is to define charge level features based on the
individual shot time series and other process information
that we list next.

Past scrap rate time series give a highly accurate pre-
diction by themselves. However, this type of prediction lacks
novelty to the operator. We generate moving averages to de-
fine baseline classifiers, that will only be used in comparison
with the predictions of other methods.

Transfer graph statistics. First, we chose features
which can efficiently describe the individual transfer graphs.
For example, the position graph consists of straight seg-



Figure 8: The structure of the set of sensor
time series. In a single charge (see Fig. 3),
we form 50 time series of the same charac-
teristic points of the individual shot time series.

ments, and thus we can describe it with the slope of the
first segment and with the maximum. Charge level features
were obtained from these by taking the mean (minimum,
maximum) for the leadframes of the given charge.

Filling pressure by product series characterize how
the most important measurement, the filling pressure changes
as the series of products are molded. The first 50 measure-
ments of each product, as seen in the top of Fig. 6, are ar-
ranged in 50 time series that characterize a charge, as seen
in Fig. 8. We consider the matrix pij for measurement i on
shot j. Instead of considering the time series {p1j , p2j , . . .}
of each shot j, we produce the time series {pi1, pi2, . . .} from
several shots where i is a characteristic point of the transfer
graph. In our experiments we use 50 different transfer graph
points.

As an illustration of the product series, in Fig. 9 we see
that the filling pressure values are lower after machine clean-
ing, and they typically increase later on.

Feature importance was calculated by predicting in-
dividual product failure using gradient boosted tree classi-
fiers [6]. We keep the relevant features, which consist of
features of the filling pressure and the vacuum graph, the
shot count since cleaning, and information on washing.

Removed features are in trivial connection with time
and hence overfit to the three periods of production with dif-
ferent scrap rates. The list of these variables is the following.
Vacuum maximum is equal to the outside the air pressure
and identify the time of production very well. The value
of the first few vacuum measurements is also strongly cor-
related. The slope of the vacuum transfer graph, although

Figure 9: Filling pressure measurements. Red to
yellow color scale indicates measurement points 1
through 50. Vertical lines indicate new charges.

relevant, has a value that increases slowly in time as the
vacuum chamber quality decreases and maintenance is per-
formed on the chamber only a few times a year. The maxi-
mum of the position transfer graph depends on the presses
and the pellet size. The pellet size, although relevant, was
only changed once in our period of observation. Most of
these variables will be used in a study with extended time
frame of data collection.

5. MODELS
We use nearest neighbor, gradient boosted tree and sup-

port vector machine classifiers to predict increase in the
scrap rate on different feature sets. In this section we de-
scribe our methods organized by the type of the features
used.

First we recall our unusual evaluation procedure from Sec-
tion 3. We compute AUC [5] by ranking the process cycles.
For each cycle, we compute new models based on past data,
which give raw prediction scores. In case of classification
models we directly use these raw scores for AUC computa-
tion.

We considered regression models where we used the next
scrap rates sN (see Fig. 5) for training. To compute rank-
ing based AUC metric, we may either use the raw predicted
scores by regression or the transformed scores by using the
formula raw − 1.05 · sF . Note that this is the same as the
formula used to obtain the relative target from scrap rates
sN and sF which is described in Section 3.

Past scrap rate features. We used this feature set to
generate baseline models. These models perform quite well,
but predictions on scrap rate using scrap rates of the near
past are lacking added value. On the other hand, models us-
ing purely the process data are more likely to give warnings



Method AUC
SVR on time series features (transformed) 0.70
SVR on scrap rates (transformed) 0.68
2-NN DTW (transformed) 0.67
2-NN DTW 0.63
GBT on scrap rates 0.61
SVC DTW 0.59
SVR on scrap rates 0.59
SVR on time series features 0.59
GBT on time series features 0.54

Table 2: AUC for the predictions on the label sN −
1.05 · sF > 0.02. Best methods are in bold, strongest
baseline is in italics.

for unexpected scrap rate increase to the operators.
We used gradient boosted trees (GBT) and support vector

regression (SVR) on the features generated from the scrap
rates of the near past. In case of GBT, binary labels could
be used directly as target. In case of SVR, we use the values
of sN as target and compute AUC by raw or transformed
scores.

Time series features. We use SVR and GBT to predict
based on time series statistics of the 50 time series as detailed
in Section 4, and illustrated in Fig. 8. The target and the
method for calculating AUC is the same as above.

Charge DTW similarity. Dynamic Time Warping (DTW)
[10] finds an optimal alignment between the two time se-
ries by minimizing the sum of squares of the distances of
aligned points. We compute DTW over the 50 series de-
fined Section 4. For two charges S and T , let the 50 time
series of the 50 characteristic points be Si and Ti each, for
i = 1..50. For DTW distance based classification, a sim-
ple but accurate classifier is the nearest neighbor, as mea-
sured in [22]. For the nearest neighbor algorithm, the dis-
tance of charges S and T is obtained as the Euclidean dis-

tance dTS =
√∑50

i=1 distDTW (Ti, Si)2. We compute near-

est neighbor regression of the next scrap rates (sN ) for the
k nearest charges as raw score, which we also transform by
raw − 1.05 · sF .

Finally, we also use support vector classification (SVC)
[20] over DTW distances based on the ideas in [2, 4, 7]. We
set a random sample r of charges aside and for the rest
of the charges we compute the DTW distances from each
charge in r. For each charge, hence we obtain 50 · r values
as features and we apply support vector machines to classify
the increased scrap rate target.

6. EXPERIMENTS
In our experiments, predictions were made by using the

models described in Section 5. The prediction target is
sN − 1.05 · sF > 0.02. The AUC values are summarized in
Table 2 in descending order. Recall that AUC is computed
for a ranking based on the output score of different models.
We noticed that the transformed scores raw− 1.05 · sF per-
form well, since they adjust the scores to denote the scrap
rate increase and not actual scrap rates. Also note the un-
expectedly low performance of GBT for both feature sets.

We also investigated the performance of k-NN as the func-
tion of k in Fig. 10. As we observed, in all cases, k = 2 per-
forms best with slow degradation and finally slight increase
towards the global average as prediction.

Figure 10: Performance of DTW based k-NN as
function of k.

Figure 11: AUC for the combined predictions (1 −
p) · 2-NN DTW + p · SVR on time series features.
Horizontal line is the AUC for the prediction SVR
on scrap rates.

We combined the best time series feature based model pre-
diction, SVR on transformed features, with the 2-NN time
series similarity based prediction. As a baseline, we consid-
ered SVR on scrap rates, since it had the best performance
among the scrap rate based models. The result in Fig. 11
shows that the combined models outperform the baseline,
i.e. we are able to predict the undesirable increase of scrap
rate just looking at the process parameters with better accu-
racy than models using information about past scrap rates.
Our model hence gives warnings for potentially unexpected
scrap rate increase to the operators.

Finally we investigate how prediction quality depends on
the average scrap rate around the time of the prediction.
Recall from Fig. 7 that we have three periods, the first with
normal, the second with increased, and the last with very
high scrap rates. The best prediction by using the com-
bined models is depicted in Fig. 12. We observe that the
warnings are present in all phases, and thus our solution
may be meaningful under different circumstances. By our
careful selection of removed features that characterize the
production period such as outside air temperature, we were
also able to avoid overfitting to the periods with high scrap
rate.



Figure 12: Prediction scores of the best combina-
tion as a series of the 164 production cycles. Actual
positive instances are red.

7. RELATED RESULTS
Data driven methods have a wide range of applications

in manufacturing, both in the product development phase
and during manufacturing. Predictive methods can be used
for quality improvement in various ways [9] by describing
product and process quality, predicting quality both for de-
sign and during manufacturing, distinguishing machine or
product failure patterns, and optimizing process parameters
especially in the development phase.

In this paper, we used state-of-the-art classification tech-
niques [22]. The use of DTW [10] is common in several
fields including speech, gesture and shape recognition. The
efficient calculation of DTW is studied in [8, 14].

Surprisingly, time series classification methods known well
for over a decade in the machine learning community have
apparently not yet reached the manufacturing application
domain. A survey from 2011 [9] on data mining applications
for quality improvement in manufacturing industry has no
mention of time series classification. Next we review results
concerning data analysis of the molding process. While the
present paper considers the transfer molding process, most
related results are on injection molding technologies [15].
These work with raw material having different characteris-
tics than transfer molding, however the parameters which
should be controlled carefully are basically the same.

While our focus is predicting quality in future production
batches, related research focuses only on predicting individ-
ual product quality. In our case, as the final product is ultra-
sonar scanned, predicting scrap after production is meaning-
less. In other applications, however, researchers may build
models from actual or simulated production data for the
purpose of optimizing process parameters.

Typical results for analyzing molding process data predict
individual product quality based on rather limited feature
sets. For example, [13] uses only mold flow rate, injection
pressure, mold temperatures, and melt temperatures as in-
put to artificial neural networks. They predict the quality
of simulated injection molding only. In a paper using neural
networks for injection molding scrap prediction [3] that lists
several other similar results, all cited papers use 4-6 features
only.

In case of molding, parameter optimization is made by
making experiments with different parameter settings, and
then interpolating the value of the quality index. In [1,16,17]

after selecting some features, neural networks and genetic al-
gorithms are used to predict the quality of a product manu-
factured with a given setting, and thus finding the optimal
process parameters.

Another important application of data analysis in molding
is online quality monitoring. [18] presents a real case appli-
cation, where pressure sensor data for few hundred products
was collected from manufacturing with different parameters,
and the data is classified as good or scrap with high ac-
curacy. In [12] an in-process data is inspected to classify
six different failure modes after the product left the ma-
chine using neural networks and SVM. In [24] a method is
presented for on-line quality prediction in transfer molding.
First, principal component analysis is used to determine few
uncorrelated features in strong connection with the quality
index. In order to take the mold cycles of the past into con-
sideration, an ARX model is used for predicting the quality.
The method is tested with several parameter settings on a
production period.

We found only two papers, both mentioned above, that
create time series based on sensor data of molding processes,
however even these papers apply standard classification by
using points of the time series as regular numeric features.
In [12], temperature and pressure time series are created,
however due to the large input size, they only kept six pro-
cess variables: cycle time, metering time, injection time,
barrel temperature at one stage, cushion, and injection ve-
locity. Finally in [18], pressure time series were collected by
using two sensors. They recorded 237 pressure cycles, out of
which 85 led to producing faulty pieces. They report accu-
racy for using Naive Bayes, decision trees, SVM and nearest
neighbors after clustering. However they use no time series
specific methods, rather just use pressure values as numeric
features for the classifiers.

8. CONCLUSION
In this paper we demonstrated how time series classifica-

tion can aid manufacturing processes by issuing warnings
for anticipated increase of scrap rates. On a 3-month mold-
ing manufacturing data, we simulated a warning system for
scrap rate increase by using different classification methods,
and evaluated the predictions. As result, we found dynamic
time warping based nearest neighbor and time series based
support vector regression as good performing methods that
also combine well in a classifier ensemble. The crux of our
results lie in feature engineering: we process hierarchical
data, in which sensor time series of individual products are
arranged in a higher level time series of the production life-
time. The presented results can serve as a solid basis for
designing and deploying a warning system that could work
in real time. We plan to release a slightly blurred version of
the data for the reproducibility of our experiments.
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