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ABSTRACT

Determining similarities (or distance) between multivariate time

series sequences is a fundamental problem in time series analy-

sis. The complex temporal dependencies and variable lengths of

time series make it an extremely challenging task. Most existing

work either rely on heuristics which lacks flexibility and theoretical

justifications, or build complex algorithms that are not scalable to

big data. In this paper, we propose a novel and effective metric

learning model for multivariate time series, referred to as Deep
ExpeCted Alignment DistancE (DECADE). It yields a valid distance

metric for time series with unequal lengths by sampling from an

innovative alignment mechanism, namely expected alignment, and
captures complex temporal multivariate dependencies in local re-

presentation learned by deep networks. On the whole, DECADE can

provide valid data-dependent distance metric efficiently via end-to-

end gradient training. Extensive experiments on both synthetic and

application datasets with multivariate time series demonstrate the

superior performance of DECADE compared to the state-of-the-art

approaches.
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1 INTRODUCTION

Multivariate time series data is ubiquitous in many practical ap-

plications, such as health care [25], neuroscience [20], and speech
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recognition [19]. One of the fundamental problems in time series

analysis is measuring the distance (or similarities) between time

series sequences. For example, in health care applications, doctors

are interested in answering “patients like me”, i.e., identifying simi-

lar patients in the database as the query patient by comparing their

time series records of vital signs and lab measurements. Efficient

and accurate similarity and distance measure also serves as the

basis for many important tasks including but not limited to search,

classification, and clustering [7, 17, 28].

A variety of similarity measures have been developed for time

series data, most of which consist of two components [22, 24, 26]:

an alignment between two time series which matches the time

steps and a predefined local distance between feature vector pair at

each single time step. The resulted (global) similarity measure is

then the sum of all the local distances between the aligned feature

pairs. However, existing alignment algorithms are either heuristics

without theoretical justifications or too complex to be calculated

efficiently. For example, dynamic time warping (DTW) [1], one of

the most popular alignment algorithms, does not produce a valid

distance metric since it violates the triangle inequality. Global alig-

nment kernel (GAK) [4] produces a positive definite kernel (and

thus can produce valid distance metric) only if certain property

is satisfied in the local kernel and is computationally expensive

on big datasets. Moreover, a set of distinctive properties of multi-
variate time series data, such as complex temporal dependencies,

high dimensionality, large scale, and irregular sampling [12], ma-

kes standard data-independent local distances, such as Euclidean

distance, insufficient to measure similarities. In brief, there is no

universal similarity metric that can work best across all time series

applications [13], and learning a powerful data-dependent distance
metric is an essential step to the success of many learning tasks on

different multivariate time series data.

To demonstrate the necessity of learning data-dependent dis-

tance and motivate our proposed model, we construct a synthetic

dataset with 150 multivariate time series of three classes generated

from multivariate non-linear base functions with random tempo-

ral shifts. We compared the similarity computed by MDTW and

GAK with L2 distance to our proposed method by visualizing the

2-dimension embedding using multidimensional scaling (MDS) [2].

Without learning any metric, the samples from different classes are

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
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mixed together in Figure 1(b) and 1(c). On the contrary, as shown

in Figure 1(a), our proposed data-dependent metric makes the three

time series clusters quite distinguishable even in low dimensional

space.

In this paper, we develop a novel multivariate time series me-

tric learning framework called Deep ExpeCted Alignment DistancE
(DECADE). we utilize deep networks to capture the complex tempo-

ral dependencies in data-dependent local distance for multivariate

time series. As shown by recent development in deep learning on

metric learning for other types of structured data [6, 9, 11, 29],

deep network models have much larger model capacity than other

methods to learn nonlinear metric. To make training procedure

efficiency and ensure the obtained metric is a valid (global) distance

metric, we propose a new alignment method namely expected alig-
nment. Instead of taking one single best warping path in DTW and

all possible alignments in GAK, the expected alignment averages

the distance between aligned time series over all warping paths

of proper length. We prove that DECADE yields a valid metric

satisfying triangular inequality while only requiring that the local

distance is a valid metric. Moreover, the expected alignment can

be efficiently computed by sampling a few warping paths. Lastly,

DECADE is flexible enough that any existing metric learning fra-

mework, such as the large margin approach, can be plugged in

so that complex data-dependent distance metric can be effectively

learned via end-to-end gradient training. We compare DECADE to

several state-of-the-art time series metrics and similarities on both

synthetic and real-world health care datasets. Experiment results

on tasks including visualization and classification demonstrate the

superiority of our approach.

(a) Proposed Metric (b) MDTW (c) GAK

Figure 1: Visualizations of time series embedding in 2 dimen-

sions via multidimensional scaling. Different colors and

markers refer to different classes.

2 RELATEDWORK

In this section, we review several representative time series metric

learning models and compare them to DECADE in terms of three

aspects: which local distance is used; how the time series are aligned;
and whether the global similarity measure is a valid distance. A

summmary is shown in Table 1.

Some commonly used methods take predefined local distance,

such as multivariate dynamic time warping (MDTW) [1], global

alignment kernel (GAK) [4], and multiple sequence alignment

(MSA) [10]. A few other works aim to learn a linear local distance

metric. For example, ML-TSA [14] learns a linear Mahalanobis local

distance assuming the ground truth alignment is given. LDMLT-

TS [16] takes LogDet divergence to learn a linear local metric under

the best alignment path. However, standard data-invariant or linear

Table 1: Comparisons of common time series similarity me-

asures.

Data-dependent

local metric

Considering

alignment

Valid

metric

MDTW No Single No

GAK No Multiple Yes1

MSA No Single Yes

ML-TSA Yes Single No

LDMLT-TS Yes Single No

MaLSTM Yes (Deep) No Yes

DECADE Yes (Deep) Multiple Yes

local distance functions may not be sufficient for complex multivari-

ate time series data. Different from these methods, DECADE applies

a deep neural network model to learn local distance which enables

it to capture high-dimensional correlations and interactions.

In terms of the alignment method, most existing methods define

the global similarity measure under the single best warping path as

in MDTW. It not only leads to a invalid metric violating triangular

inequality but also results in inefficient training procedure due to

the iteration between finding the warping path and optimizing

the local distance model. Besides the alignment based approaches,

Long Short-Term Memory (LSTM) models are also directly used

for modeling time series similarities [18, 21]. The states from last

hidden layer are treated as the representations and the L1 or L2

distance on the representations are computed as the global distance.

However, these approaches usually focus on the overall patterns

and cannot effectively capture the complex temporal dependencies

in multivariate time series which can only be exposed by temporal

alignment.

For the validity of the global distance, only three approaches

besides DECADE produce valid distance metrics. However, GAK

and MSA use predefined data-independent local distance thus le-

ading to inaccurate metric due to the incompetence in capturing

complex interactions. On the contrary, DECADE produces a valid

global distance metric with flexible local distance.

3 METHODOLOGY

An ideal global similarity for multivariate time series should have all

the following three desired properties: First, the model should have

enough capacity to capture complex high-dimensional interactions

in multivariate time series accurately. Second, the similarity me-

asure should be a valid distance metric so that it can be used for

kernel definition. Third, the proposed similarity measure should be

computationally efficient in both training and testing.

In this section, we present our proposed multivariate time se-

ries distance metric called Deep ExpeCted Alignment DistancE (DE-

CADE) with all three desired properties. We first describe the two

major components of DECADE, the expected alignment and the

1
Constraints on local kernel selection.
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deep local distance model, which can capture the complex interacti-

ons from time series and ensure the validity of the learned global

metric. Then we show howDECADE can be trained efficiently in an

end-to-end way using the large margin metric learning framework

and back-propagation.

In the rest of this paper, we use bold capital letter, such asX ,Y ,Z ,
to denote multivariate time series. HereX = (X1,X2, · · · ,XTX )T ∈

RTX ×P
is amultivariate time series of lengthTX andwith P features.

Its t-th column Xt ∈ R
P
represents its observation at time step t .

3.1 Expected alignment

The expected alignment considers the average distance over all

possible alignment paths with length betweenUl andUh . HereUl
andUh are two free parameters which can be chosen based on data

properties and efficiency requirement and will be discussed later.

Let X and Y be two time series of length TX and TY respectively,

and AU be the set of all possible alignment paths of length U
between X and Y , the distance with expected alignment is defined

as

DEA(X ,Y ) = EU ∈[Ul ,Uh ]

[
EA∈AU

[
D
(X ,Y )

A

] ]
=

1

Uh −Ul + 1

Uh∑
U=Ul

1

|AU |

∑
A∈AU

D
(X ,Y )

A
(1)

where D
(X ,Y )

A
is the global distance of X and Y on one alignment

path A.

Before giving the formal definition of D
(X ,Y )

A
, it is necessary to

describe how the alignment path is mathematically represented.

An alignment path A for two time series X and Y can be represen-

ted by a pair of monotonically non-decreasing sequences (α , β)
with the same lengthU . This sequence pair corresponds to a map-

ping between the two time series: For all t ∈ {1, . . . ,U }, we have

αt ∈ {1, . . . ,TX } and βt ∈ {1, . . . ,TY }, andwemap all theXαt and

Yβt . In most cases, some constraints on the alignment are introdu-

ced to make a better trade off between the efficiency and accuracy.
2

Given the local distance d(·, ·), the distance betweenX andY on the

alignment A is defined as D
(X ,Y )

A
=

∑U
t=1

d(Xαt ,Yβt ). In practice,

d(·, ·) can be any valid local distance, such as the commonly used

squared Euclidean distance d(Xαt ,Yβt ) = ∥Xαt −Yβt ∥
2

2
. In the

proposed DECADE model, we combine the neural network based

local distance ddnn (Xαt ,Yβt ) described in Section 3.2 to capture

the complex interaction of high dimensional time series. Also, using

average distance instead of single best alignment path makes ex-

pected alignment a valid metric since the alignments are no longer

coupled together with the local distance as in MDTW. Considering

average over only alignment paths with certain lengths instead of

all possible paths as in GAK makes our expected alignment more

flexible and efficient. We no longer have constraint on the local

kernel such that any valid local distance leads to a valid global

distance metric.

2
For instance, DTW requires (i) constraint on start and end points, (α1, β1) = (1, 1)

and (αU , βU ) = (TX , TY ), and (ii) constraint on local smoothness: (αt+1, βt+1) −

(αt , βt ) ∈ {(1, 0), (0, 1), (1, 1)} for all t ∈ {1, . . . , U − 1}.

The remaining question is how we can efficiently compute the

distance between two time seriesX andY using the expected align-

ment. Our solution is a sampling based method. Though the number

of alignment path is exponential in the length of the alignment, the

empirical mean of i.i.d sampled alignment paths converges quite

fast, and only polynomial number of samples will be sufficient to

guarantee a small error.

The key insight for the sampling method is that we can represent

the alignment path (α , β) in an equivalent way: For one time series

X = (X1, . . . ,XT )
T
and a vector a = (a1, . . . ,aT ) ∈ N

T
, we write

Xa as

Xa = (X1, · · · ,X1︸       ︷︷       ︸
a1 times

,X2, · · · ,X2︸       ︷︷       ︸
a2 times

, · · · ,XT , · · · ,XT︸         ︷︷         ︸
aT times

) ∈ RU×P

where U =
∑T
i=1

ai = ∥a∥
1
. Xa can be considered as the warped

time series of X given an alignment path of length U . We use

Xa (t) to denote the t-th entry of Xa . Thus, one alignment A with

sequences (α , β) of lengthU can also be represented as two vectors:

a ∈ NTX and b ∈ NTY , where ∥a∥
1
= ∥b∥

1
= U . It’s also noting

that Xa (t) = Xαt and Yb (t) = Yβt for t ∈ {1, · · · ,U }. Moreover,

we denote A(T ,U ) = {a ∈ NT |∥a∥
1
= U }. The distance between

X and Y under alignment A then can be written as D
(X ,Y )

A
=

D
(X ,Y )

a,b
=

∑U
t=1

d(Xa (t),Yb (t)).

In order to sample the alignments, we first uniformly sample a

lengthU ∈ [Ul ,Uh ], then uniformly sample a ∈ A(TX ,U ) and b ∈

A(TY ,U ) independently. Sampling a can be achieved by uniformly

sampling a non-negative integer solution of equation

∑TX
t=1

xi = U ,

which reduces to uniformly choosingTX − 1 items fromTX +U − 1

items. We use the same way to get the sample b. After that, we can
get the sampled alignment path and compute distance along the

path.

Next, we show that the expected alignment produces a valid dis-

tance metric given that the local similarity measure is a valid metric

satisfying the triangular inequality in Theorem 3.1. It holds especi-

ally for our DECADE with the neural network based local distance.

Moreover, we show that the convergence guarantee of sampling

based method to compute the distance with expected alignment in

Theorem 3.2. We leave the proofs in the supplementary.

Theorem 3.1. When the local similarity measure d(Xt ,Yt ′) is a
valid distance metric, the expected alignment produces a valid metric
DEA(X ,Y ). Namely, it satisfies all the three following properties:

(a) DEA(X ,Y ) ≥ 0 (non-negativity),
(b) DEA(X ,Y ) = DEA(Y ,X ) (symmetry), and
(c) DEA(X ,Y ) + DEA(Y ,Z ) ≥ DEA(X ,Z ) (triangle inequality).

Proof. The first two statements can be immediately seen from

the definition. We only need to show that the expected distance

satisfies triangular inequality.

Given that the distance between X and Y under alignment A
can be written as

D
(X ,Y )

A
= D

(X ,Y )

a,b
=

U∑
t=1

d(Xa (t),Yb (t))
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and the number of different alignments with path length U is

|A(TX ,U )| · |A(TY ,U )|, we can represent the distance with ex-

pected alignment as follows:

DEA(X ,Y ) =
1

Uh −Ul + 1

Uh∑
U=Ul

1

|AU |

∑
A∈AU

D
(X ,Y )

A

=
1

Uh −Ul + 1

Uh∑
U=Ul

∑
a∈A(TX ,U )

∑
b ∈A(TY ,U ) D

(X ,Y )

a,b

|A(TX ,U )| · |A(TY ,U )|
(2)

With the above representation, it is easy to show that the ex-

pected alignment distance satisfies the triangular inequality. Consi-

der any fixed lengthU , given Equation 2, we need to show∑
a∈A(TX )

∑
b ∈A(TY ) D

(X ,Y )

a,b

|A(TX )| · |A(TY )|
+

∑
b ∈A(TY )

∑
c ∈A(TZ ) D

(Y ,Z )

b,c

|A(TY )| · |A(TZ )|

≥

∑
a∈A(TX )

∑
c ∈A(TZ ) D

(X ,Z )
a,c

|A(TX )| · |A(TZ )|
(3)

We drop the symbol U in A(T ,U ) to simplify the notations. To

be more specific, we have∑
a∈A(TX )

∑
b ∈A(TY ) D

(X ,Y )

a,b

|A(TX )| · |A(TY )|
+

∑
b ∈A(TY )

∑
c ∈A(TZ ) D

(Y ,Z )

b,c

|A(TY )| · |A(TZ )|

=

∑
a∈A(TX )

∑
b ∈A(TY )

∑
c ∈A(TZ )

(
D
(X ,Y )

a,b
+ D

(Y ,Z )

b,c

)
|A(TX )| · |A(TY )| · |A(TZ )|

=

∑
a∈A(TX )

∑
c ∈A(TZ )

∑
b ∈A(TY )

∑U
t=1

(Ξ)

|A(TX )| · |A(TY )| · |A(TZ )|

≥

∑
a∈A(TX )

∑
c ∈A(TZ )

∑U
t=1

∑
b ∈A(TY ) d(Xa (t),Zc (t))

|A(TX )| · |A(TY )| · |A(TZ )|

=
|A(TY )|

∑
a∈A(TX )

∑
c ∈A(TZ ) D

(X ,Z )
a,c

|A(TX )| · |A(TY )| · |A(TZ )|

=

∑
a∈A(TX )

∑
c ∈A(TZ ) D

(X ,Z )
a,c

|A(TX )| · |A(TZ )|

where Ξ = d(Xa (t),Yb (t)) + d(Yb (t),Zc (t)).
Then taking a summation over the left and right side of Equa-

tion 3 over all lengthU ∈ [Ul ,Uh ] concludes the proof. �

Theorem 3.2. Given any two time series X and Y and the local
distance is bounded by 1, if we approximate expected alignments with

O

(
U 2

h
ε3

)
alignment samples, with high probability we have��DEA(X ,Y ) − D̂EA(X ,Y )

�� ≤ ε

Proof. First we know E
[
D̂EA(X ,Y )

]
= DEA(X ,Y ). Since all

alignment are sampled independently, all the distances D
(X ,Y )

am,bm
calculated on the alignment sample (am ,bm ) are independent. As

the local distance is bounded by 1, we have 0 ≤ D
(X ,Y )

am,bm
≤ Uh .

From Hoeffding’s inequality [8] we know for n independent

random variables X1, . . . ,Xn bounded by the interval [0, 1], we

have

P
(
X̄ − E

[
X̄

]
≥ t

)
≤ exp

(
−2nt2

)
Then applying it on the distances D

(X ,Y )

am,bm
and letting t = ± ε

Uh
leads to

P

(��DEA(X ,Y ) − D̂EA(X ,Y )
�� ≥ ε

)
≤ 2 exp

(
−2nε2

U 2

h

)
Thus, with n = O

(
U 2

h
ε3

)
alignment samples we have

P

(��DEA(X ,Y ) − D̂EA(X ,Y )
�� ≤ ε

)
= 1 − O

(
exp(

1

ε
)

)
�

The assumption in Theorem 3.2 on bounded local distance can

be easily satisfied in DECADE. For example, we can use sigmoid

function in the output layer, and take the squared Euclidean distance

divided by the representation dimensionalityQ , or cosine similarity,

as local distance.

3.2 Local representation learning via deep

networks

Learning a powerful data dependent local distance metric is vital

in the success of designing global similarity measure. To capture

the complex dependencies, we utilize local representation learning

via deep neural network to obtain a data-dependent local distance.

We define the function fDNN (·) : RP 7→ RQ as the transforma-

tion function via deep network, which maps P dimensional input

features to Q dimensional representations. Given a time series X ,

we apply the same deep network (with shared parameters) on the

observations Xt at each time step t , and take the output of the

network as the learned representation at that time step. We use

˜Xt = fDNN (Xt ) to denote the learned representation of Xt . To

compute the local distance of feature vector pair of two time series

X and Y at step t and t ′ respectively, we first use our neural net-
work to carry out the feature transformation and the learned local

distance is defined as the squared Euclidean distance between
˜Xt

and
˜Yt ′ , i.e., ddnn (Xt ,Yt ′) = ∥ ˜Xt − ˜Yt ′ ∥

2

2
.

It should be noticed that naively combining the above local

distance model with DTW or GAK does not lead to a valid distance

metric. DTW violates the triangle inequality as it computes the

alignment using a single best warping path. GAK, on the contrary,

could produce a valid distance metric. However, it requires that
κ

1+κ
is positive definite where κ is the local kernel [3]. This condition is

most likely to be violated if complex deep neural network is used

as local kernel.

3.3 Learning DECADE via large margin

approach

In this section, we take the large margin metric learning frame-

work [27], one of the most widely used metric learning frameworks,

as an example to show how we learn complex data-dependent dis-

tance metric in DECADE via end-to-end gradient training. The

basic idea of large margin metric learning is to reduce the distance

between the data instance X and the instances with the same label,
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generally referred to as the targets of X , and increase the distance

betweenX and the instances with different labels, referred to as the

imposters of X . Intuitively, better metrics learnt from data should

pull the target neighbors closer and push the imposter neighbors

further away. Suppose that we are given a set of N multivariate

time series {X (i)}Ni=1
from C different classes. The large margin

approach aims at minimizing the objective function

L(D) = L+(D) + L−(D) + R(D) (4)

where

L+(D) =
N∑
i=1

∑
j ∈S+i

D(i, j)

L−(D) = λ
N∑
i=1

∑
j ∈S+i

∑
k ∈S−

i

[
δ + D(i, j) − D(i,k )

]
+

Here R(D) represents the regularization on distance metric and

deep networks; D(i, j) = DEA(X
(i),X (j)) is the global expected dis-

tance between X (i)
and X (j)

; S+i and S−
i are the sets of selected

target and imposter neighbors of X (i)
, respectively; Hyperparame-

ters λ and δ control the impact of targets and imposters in training;

[x]+ = max{x , 0} is the hinge loss function.
The designed expected alignment sampling enables end-to-end

gradient training of the neural network parameters via backpropa-

gation using mini-batch stochastic gradient descent. During trai-

ning, we sample mini-batches of target and imposter neighbors,

and further sample alignment paths to compute the global distance

between time series. As the distance along the sampled alignment

path is an unbiased estimator of the expected distance, we can

carry out efficient training using stochastic gradient descent. In

DTW based approaches, on this contrary, as the best alignment

path depends on the local similarity measure, parameter learning

involves iteration between optimizing the parameters and finding

the optimal alignment path. The iterative approach not only leads

to inefficiency in terms of running time but also makes the model

more prone to be trapped in local optima.

3.4 Efficiency of DECADE

In terms of implementation, Several factors have effects on the com-

putational efficiency of DECADE during both training and testing.

First, we need to choose proper numbers of target and imposter

neighbors in training procedure for each time series, i.e., the size

of S+i and S−
i in Equation 4. In practice, we found that setting a

number much smaller than the number of training samples N is

enough to provide good performance. In order to make the training

procedure more efficient, S+i and S−
i are built based on the origi-

nal DTW distance before training, and after every several training

epochs, S−
i is updated based on the learned distance at that time.

Second, we need to set a proper range for the alignment path length

and number of sampled alignments used in DECADE. The validity

of DECADE always holds no matter what the length range is set,

but the distribution of the alignments can be quite different. In

our experiments, we set the upper bound Uh = O (T ) where T is

the average length of time series in the dataset. The approxima-

tion bound from Theorem 3.2 requires O(U 2

h ) alignment samples,

however, in practice using O(T ) samples can provide satisfying

performance and is more efficient. Thus, it takes O
(
T 2

)
to compute

the global similarity between two time series, which is the same as

MDTW and GAK. Also, several speedup tricks such as Sakoe-Chiba

band constraints [23] for DTW can also be applied to the alignment

sampling process in DECADE.

4 EXPERIMENT

In this section, we carry out extensive experiments on three real-

world datasets from health care domain to compare the performance

of our proposed DECADE to several state-of-the-art time series

metric learning methods in classification and visualization.

4.1 Datasets

We describe the three real-world datasets used in our experiments

with their data properties as follows.

• EEG
3
The EEG dataset contains measurements from 64 elec-

trodes placed on the subjects’ scalps when different number

of stimuli (0, 1, or 2) are exposed to the subjects. The subjects

belong to either alcoholic or control group. We sample 436

time series from the original dataset. The resulted dataset

has 64 features (one for each electrode) with fixed length 16.

Our task is to classify the subjects to six classes (whether the

subject belongs to alcoholic or control group and the number

of stimuli the subject is exposed to) from the recording of

the electrodes.

• PhysioNet
4
The PhysioNet dataset has 918 irregularly

sampled time series with 34 features from the first 48 hours

(i.e., with a fixed temporal length of 48) of intensive care

unit (ICU) stays after downsampling. We conduct the morta-

lity prediction task, which is a binary classification task to

predict in-hospital mortality of the patients.

• ICU The ICU dataset, which is firstly introduced in [12],

consists of physiologic measurements recorded by clinical

staff during the delivery of care in intensive care units at

a major urban hospital for one week. We take a subset of

this dataset which includes 1734 time series with 13 features.

The length of time series varies from 24 to 36. Similar to the

PhysioNet dataset, we conduct the mortality prediction task

on this dataset.

In both PhysioNet and ICU datasets, the ratio of positive samples

is 50%. It should be noticed that these two datasets have lots of

missing values and irregular samples and we applied the commonly

used last observation carried forward imputation method [5]. The

noisy observations make the prediction tasks very challenging

where simple similarity measures may not perform well. There are

nomissing values in EEG dataset but the number of features is larger

than the length of time series, which also affects the performance

of simple similarity measures.

4.2 Algorithms

Baseline methods. We test several multivariate time series si-

milarity measures as baselines in our experiments. We group the

3
https://archive.ics.uci.edu/ml/datasets/EEG+Database

4
http://physionet.org/challenge/2012/
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baselines based on whether local distances are learned or not as

follows.

The first three methods use predefined data-independent local

distances.

• MDTW : Multivariate dynamic time warping.

• GAK : Global alignment kernel [4]. We use the suggested

settings of the hyperparameters from the original paper and

D
(i, j)
GAK
=

KGAK(i, j)√
KGAK(i,i)KGAK(j, j)

as the global distance from GAK

kernel.

• MSA: Multiple sequence alignment in [10] with L2 distance

as the local distance model.

The following five baselines learn data-dependent similarity me-

asures. Notice that all methods in this group use label information

in training.

• ML-TSA: Metric Learning for Temporal Sequence Alignment

proposed by [14] with iterations between learning the local

metric and finding the optimal alignments as no ground

truth alignment is provided in our dataset.

• LDMLT-TS: Method from [16] with default hyperparameter

settings in their implementation.

• MaLSTM: Method proposed in [18].

• MSA-NN : Extension of MSA which iterates between finding

the best alignment from MSA and optimizing a 2-layer feed

forward neural network as local distance.

• MDTW-NN : Extension of MDTW combined with our lear-

nable deep local distance model proposed in Section 3.2 and

iterative training.

Ourmethod. We test the proposedDECADE described in Section 3,
with the data-dependent local metric and the expected alignment,
optimized in the large margin framework. We use a two layer

feed forward neural network with sigmoid activation function

as the deep local distance model. Each layer of the network has

the same input and output size, which is the dimension of the

time series P . For the alignment length range in DECADE, we set
Ul = Tave ,Uh = 1.5Tave , where Tave is average time series length

in the dataset. The value of the hyper-parameters δ and ratio λ
are chosen with proper cross validation. We set the numbers of

targets and imposters to be 3 and 10 respectively. Our experimental

results also show that the performance of DECADE does not heavily

depend on the value of hyperparameters if their values are in a

reasonable range.

4.3 Experimental results

Nearest Neighbor classification. We evaluate all the methods in

terms of classification accuracy on all the three real world datasets,

with 5-fold cross validation. Table 2 shows the 1-nearest neighbor

classification accuracy on all datasets, and the k-nearest-neighbor
classification results with k from 1 to 19 are shown in Figure 2

Overall DECADE performs the best among all the baselines on two

of three datasets in terms of 1-NN classification accuracy. Moreo-

ver, in complementary experiments it outperforms the baselines

across a wide variety of scenarios with different numbers of neig-

hbors. For detailed analysis, we first compare the difference of

data-independent similarities to data-dependent similarities lear-

ned from data across different datasets. We observe that on average

the improvement from learning data-dependent similarities is more

significant on the EEG dataset with more input dimensions. Spe-

cifically, DECADE improves over best data-independent similarity

measures GAK significantly by more than 17% percent while the

improvement on PhysioNet dataset with lower feature dimension

is about 8%. These observations demonstrate the necessity of le-

arning data-dependent local distance to capture high-dimension

complex interactions. Next, we compare the performance of DE-
CADE to similarity measures, MSA-NN and MDTW-NN, which use

deep models as local distances. Our method outperformes both of

them on all of the three datasets. This observation implies that

a deep local distance model alone is not enough to achieve accu-

rate similarity. The expected alignment allows DECADE to directly

learn the local distance without iterations of finding alignments

and thus resulting in better metrics. Moreover, the training of DE-
CADE is more efficient since other approaches need to compute

the alignments frequently. Additionally, we observe that DECADE
outperforms MaLSTM on all datasets showing the difficulties of

captures long-term dependence solely by LSTM. Another interes-

ting observation is that the standard deviation of accuracy across 5

folds for DECADE is much smaller than that of the baselines. We

attribute the robustness of our method to the expected alignments

where the global distance is the average over many alignment paths

of different lengths.

Table 2: 1-nearest neighbor classification accuracy. (mean ±

standard deviation)

Method \ Dataset EEG PhysioNet ICU

MDTW 0.3026 ± 0.06 0.6509 ± 0.05 0.7180 ± 0.02

GAK 0.3114 ± 0.05 0.6479 ± 0.05 0.6910 ± 0.03

MSA 0.2700 ± 0.03 0.6553 ± 0.05 0.6996 ± 0.02

ML-TSA 0.3375 ± 0.06 0.6406 ± 0.04 0.7123 ± 0.02

LDMLT-TS 0.3475 ± 0.03 0.6499 ± 0.04 0.7278 ± 0.03

MaLSTM 0.2963 ± 0.02 0.6886 ± 0.03 0.6926 ± 0.02

MSA-NN 0.3271 ± 0.05 0.6557 ± 0.02 0.7123 ± 0.02

MDTW-NN 0.3067 ± 0.05 0.6981 ± 0.02 0.7220 ± 0.02

DECADE 0.3652 ± 0.01 0.7060 ± 0.02 0.7232 ± 0.02

Kernel SVM classification. One advantage from a valid distance

metric is that it can produce positive semi-definite kernels and

thus be used safely in many kernel methods. While some other

similarities, such as DTW, are often plugged into kernel methods

in practice but have no guarantees and poor generalizations [15].

Thus, we take kernel SVM to further demonstrate the superiority

or DECADE. We tested DECADE with MDTW and GAK, and two

other baselines LDMLT-TS and MDTW-NN which give the best

performance in the previous 1-nearest neighbor classifications. We

build Gaussian RBF kernel with all these similarities except for

GAK, which we use as kernel directly. As shown in Table 3, SVM

with kernel built on DECADE performs the best among all SVM

models.
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Figure 2: Nearest neighbor classification results on real-world health care datasets. x-axis: number of nearest neighbors (k) in
k-nearest neighbor classification; y-axis: classification accuracy.

Table 3: Gaussian RBF Kernel SVM classification accuracy.

(mean ± standard deviation)

Method \ Dataset EEG PhysioNet ICU

SVM-MDTW 0.3705 ± 0.03 0.7155 ± 0.02 0.7665 ± 0.01

SVM-GAK 0.3658 ± 0.04 0.7209 ± 0.02 0.7468 ± 0.01

SVM-LDMLT-TS 0.3759 ± 0.01 0.7298 ± 0.02 0.7630 ± 0.01

SVM-MDTW-NN 0.3764 ± 0.03 0.7382 ± 0.01 0.7670 ± 0.01

SVM-DECADE 0.3974 ± 0.03 0.7429 ± 0.01 0.7670 ± 0.02

Time series embedding visualization. Wevisualize the 2-dimensional

embedding of time series from the PhysioNet dataset in Figure 3.

Similar to the visualization of synthetic dataset in Section 3.3, we

apply multidimensional scaling based on their pairwise distance

from DECADE, MDTW and LDMLT-TS. To keep the plot unclut-

tered, we only visualize the time series with high classification

confidence. DECADE provides more coherent clusters of patients

without in-hospitality mortality (the cluster of center points in

green) when compared to MDTW and LDMLT-TS. For MaLSTM,

though the two groups are also separated, more outliers are shown

in the center of each cluster. The visualization results demonstrate

that data-dependent DECADE can capture the complex similarity

measures much more accurately. Moreover, we observe that the

records of patients with in-hospitality mortality (in red) spread

out much more than the rest (in green) centered in the middle,

especially with the data-dependent local distance. This is indeed re-

asonable since records related to mortality usually have extreme or

abnormal values while records of healthy patients are more similar

to each other with values within a normal range, and it is also not

captured by MaLSTM.

Effective size of target and imposter neighbor sets. The selection
of the numbers of target and imposter neighbors is one of the key

factor in determining the training cost of DECADE. Ideally but

impractically, using all pairs of time series potentially provides the

best performance with the slowest training speed. We test different

numbers of target and imposter neighbors and report the k-nearest
neighbor classification results on PhysioNet dataset in Figure 4.

With only 3 targets and 10 imposters and one hidden layer we can

(a) DECADE (b) MDTW

(c) LDMLT-TS (d) MaLSTM

Figure 3: Embedding of PhysioNet dataset in 2 dimensions

from DECADE, MDTW, LDMLT-TS, and MaLSTM. Red/green

points refer to patient record with/without in-hospital mor-

tality.

get the best performance on this dataset. This indicates that a small

subset of targets and imposters is enough for good performance,

which makes the training efficient. The small number of required

target and imposter samples together with the efficient sampling of

the expected alignment make our DECADE efficient for large-scale

datasets.

Comparisons on local metric and different alignments in DECADE.
One question regarding to the model design is that, whether the

data-dependent local metric and expected alignment in DECADE-

are both indispensable? Why not use the expected alignment on

the raw input directly, or train the data-dependent local distance

on the best alignment? On one hand, we know the expected align-

ment part provides a valid metric and thus several good properties

and theoretical guarantees. However, taking all alignments into
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Table 4: Comparison ofMDTW (no learned local metric, best alignment), EA (no learned local metric, all alignments),MDTW-
NN (learned localmetric, best alignment), andDECADE (learned localmetric, all alignments). 1-nearest neighbor classification

accuracy (mean ± standard deviation) is shown.

EEG PhysioNet ICU

MDTW EA MDTW EA MDTW EA
0.3026 ± 0.06 0.2845 ± 0.03 0.6509 ± 0.05 0.5326 ± 0.05 0.7180 ± 0.02 0.6811 ± 0.01

MDTW-NN DECADE MDTW-NN DECADE MDTW-NN DECADE
0.3067 ± 0.05 0.3652 ± 0.01 0.6981 ± 0.02 0.7060 ± 0.02 0.7220 ± 0.02 0.7232 ± 0.02

0.67

0.7

0.73

0.76

1 7 13 19

0.67

0.7

0.73

0.76

1 7 13 19

1,3 3,10 5,30 10,60 20,120

Figure 4: Classification accuracy on PhysioNet dataset for

DECADE with different numbers of targets and imposters

with 1 sigmoid hidden layer (left) and 2 hidden layers (right).

Each curve refers to a setting of (# of targets, # of imposters);

x-axis: number of nearest neighbors (k) used k-nearest neig-
hbor classification; y-axis: classification accuracy.

consideration might not be helpful on raw input space, and thus

we need deep neural networks to learn the metric data with labels

to improve the quality of the metric. On the other hand, since the

alignment with minimum distance is dependent from the local me-

tric and thus is dependent from the neural networks, the objective

function in the end-to-end training on the best alignment is ineffi-

cient and requires alternative updates on the neural network and

the best alignment. Thus it is easy to be trapped in local optima and

inefficient. In order to demonstrate this, we also tested the expected

alignment itself without learned local metric, which is named as EA.
We compare the 1-nearest neighbor results in Table 4. We can find

using expected alignment only is not effective enough in practice,

and combining local metric together provide the best performance.

5 CONCLUSION

In this paper, we propose an effective metric learning framework

based on a novel global metric called Deep ExpeCted Alignment
DistancE (DECADE) for multivariate time series data. DECADE

can provide valid time series metric, learn data-dependent metric

while considering temporal alignment coherently within one fra-

mework, by its two indispensable components: a novel alignment

mechanism called expected alignment and a data-dependent local

metric learned by deep neural networks. Our experimental results

on synthetic and real world health-care datsets demonstrate that

DECADE is superior among state-of-the-art time series similarity

measures. The success of DECADE and its corresponding learning

framework in classification tasks also indicates great potential in

solving other related problems, such as multivariate time series

dimension reduction and time series hashing.
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