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ABSTRACT

As the penetration of renewable energy into the electrical grid is
increasing worldwide, accurate forecasting of renewable energy
generation is essential not only for grid operation and reliability, but
also for energy trading and long-term planning. In this paper, we fo-
cus on short-term wind energy forecasting. The inherent variability
and unpredictability of wind energy imposes great challenges upon
many models. Conventional time series models, such as ARIMAX,
often fail to capture nonlinear patterns in energy output, and a feed-
forward artificial neural network doesn’t take temporal dependency
into account. In this paper, we apply state-of-art autoregressive
artificial neural network (AR-ANN) models and recurrent neural
network (RNN) models to wind energy forecasting. By capturing
both the sequential pattern of energy output and the complex rela-
tionship between weather predictors and power generation, we can
achieve better forecasting accuracy. These temporally dependent
neural network structures can also be easily extended to model
other nonlinear time series and temporal data.
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1 INTRODUCTION

Among the ever-increasing share of renewable energy in the global
energy portfolio, the deployment of wind energy—-generating ca-
pacities has been most rapid and consistent worldwide [18, 20]. In
contrast to conventional energy generation, wind energy genera-
tion is largely uncontrollable and highly variable due to the volatile
nature of its energy source—wind. As a result, wind energy gen-
eration is often balanced and backed up by ancillary generators,
which creates operational challenges and increases costs [8]. It be-
comes obvious that accurate wind energy forecasting, especially
short-term forecasting, is crucial for utilities in order to increase the
integration of wind power into the electrical grid while maintaining
its reliability at a reasonable cost.

Wind energy forecasting has also received great attention from
academia in recent years [10, 13] because it represents a general
time series problem that has two important characteristics: (1) The

Pu Wang
SAS Institute Inc.
121 W Trade Street.
Charlotte, NC 28202
pu.wang@sas.com

Jingrui Xie
SAS Institute Inc.
500 SAS Campus Dr.
Cary, NC 27519
rain.xie(@sas.com

Mustafa Kabul
SAS Institute Inc.
500 SAS Campus Dr.
Cary, NC 27519
mustafa.kabul@sas.com

data often contains covariates that allow for a regression-based
analysis. In wind energy forecasting, these covariates include fu-
ture wind speed and wind direction that are predicted by weather
data providers. The fact that these covariates are predicted values
instead of measured values and contain prediction errors increases
the challenge of modeling the complex relationship between them
and the wind energy output. (2) Wind energy generation is also
autocorrelated in time and shows a time-dependent pattern [17].
Assuming independence in regression models is not realistic and
often results in poor forecasting performance.

In recent years, numerous research studies have been conducted
for wind energy forecasting and can be generally summarized into
two categories. The first one is conventional time series models,
such as autoregressive integrated moving average (ARIMA) model,
and its variant ARIMAX, which allows the inclusion of covariates
[26]. Although ARIMAX can handle both the regression on co-
variates and temporal dependency, it assumes that the response
variable at the current time step has a linear relationship with the
covariates, response variables and error terms at previous time
steps. This assumption is often violated in wind energy forecasting,
because the characteristic curve of wind energy generation with
respect to wind speed is "sigmoid-shaped" as opposed to linear [21].
In addition, a number of hyperparameters must be tuned prior to
modeling; these hyperparameters include the orders of autoregres-
sive model and moving average model, as well as the degree of
differencing [16]. This tuning increases the burden for forecasters
as they strive to find the optimal model. Another category of models
that has received a lot of attention recently are machine learning
methods, which are represented by the feedforward artificial neural
network (ANN) [7, 11]. ANN is flexible and capable of modeling the
nonlinear and complex relationship between wind energy output
and covariates such as the wind speed and wind directions. One
obvious drawback of direct modeling with a feedforward artificial
neural network is the lack of temporal information, which could
be useful in very short-term forecasting.

In this article, we propose two variations of models that are
based on artificial neural networks to address the limitations of the
conventional time series models and machine learning methods.
Our focus is on short-term forecasting of wind energy where it has



the most value in electrical grid operation. More specifically, our
strategies and contributions are:

(1) We examine the residual temporal patterns after modeling
with a feedforward neural network, and we show a strong
temporal-dependency in the wind energy output.

(2) We propose the autoregressive neural network model, into
which lagged wind energy outputs are suitably incorpo-
rated in order to handle autocorrelations and improve fore-
casting accuracy over conventional ARIMAX and feedfor-
ward neural network methods.

(3) Inaddition, we propose a recurrent neural network method,
which takes both the current covariates and the historical
sequence of wind energy output into consideration and
improves forecasting accuracy over conventional methods.

(4) We compare the forecasting performance in both one-step-
ahead and multi-step-ahead forecasting scenarios. We use
both recursive one-step-ahead forecasting and sequence-
to-sequence translation in a recurrent neural network to
achieve multi-step-ahead forecast. Our models outperform
conventional models in multi-step-ahead forecasting, which
is crucial in wind energy forecasting practice.

(5) We also provide our suggestions of the advantages and
disadvantages for each method in multi-step-ahead fore-
casting and a detailed analysis of the phenomenon of "ac-
cumulation of error" in multi-step-ahead forecasting.

The remainder of the paper is organized as follows: We discuss
about the related work in section 2. We describe the wind energy
data in section 3. In section 4, we introduce the two models pro-
posed in this research. In section 5, we demonstrate our modeling
strategies and detailed analysis on model performance by compar-
ing them to the benchmark models. In section 6, we discuss the
implications of our approach and its impact on model choice, model
tuning, and short-term wind energy forecasting.

2 RELATED WORK

Global Energy Forecasting Competition 2012 (GEFcom2012) has
attracted hundreds of contestants worldwide and motivated the
development of various methods in short-term wind energy fore-
casting during and after the competition [9]. These methods include,
but not limited to: gradient boosting models [22], artificial neural
network models [12, 25], Gaussian Process models [6, 12] and k-
nearest neighbors [15].

The reported methods are predominantly regression and ma-
chine learning models rather than time series models, partially
because the original testing period in the competition is discontin-
uous in time and give time series models a disadvantage.

Our work focuses on the incorporation of time series compo-
nents into existing machine learning models and evaluate how it
will affect the performance in one-step-ahead and multi-step-ahead
forecasting scenarios. Regular neural network model that is fre-
quently used by contestants, serves as one of the benchmark in our
research.

3 DATA DESCRIPTION

The wind energy data in this article is from the wind track of the
Global Energy Forecasting Competition 2012 (GEFcom2012) [9]. It

contains historical wind energy measurements at seven wind farms
and meteorological forecasts of wind components at the level of
wind farms. Zonal (u) and meridional (v) components of surface
wind at 10m above ground level are included in the original data, so
we can derive the wind speed as ws =Vu? + v2. The wind energy
generation is scaled to the nominal capacities of each farm in the
original competition data, which allows for a scale-free comparison
across different wind facilities. The scatter plot in figure 1 shows
the relationship between wind speed and wind energy generation
in farm 1. The plot demonstrates that for a particular wind speed,
wind energy output can vary within a wide range. This variation
can come from other covariates, from unobserved components, or
from the varying quality of wind speed forecast itself. In addition,
the underlying power curve appears to be "sigmoid-shaped", indi-
cating that the assumptions of linear regression based methods are
violated.

Wind Power vs Wind Speed Relationship
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Figure 1: Relationship between wind speed and wind energy
generation.

4 PROPOSED MODELS

In this section we propose two methods that are based on neural
networks, with a focus on modeling two aspects of wind energy
generation: (1) the complex relationship between wind energy and
weather covariates such as wind speed, wind direction, and so
on, and (2) the temporal dependency in wind energy generation.
We examine both models and compare them to the conventional
feedforward neural network model and ARIMAX in 1-hour-ahead
forecasting and 24-hour-ahead forecasting in Section 5.

4.1 Autoregressive Artificial Neural Network
(AR-ANN)

Artificial neural network (ANN) is a popular machine learning ap-
proach to handling a variety of problems, including classification,
anomaly detection, regression, forecasting, and so on [4]. ANN does
not assume a linear relationship between the covariates and the
response variable, and it has great flexibility in terms of approximat-
ing any underlying continuous functions because of its universal
approximation property with mild assumptions on the activation



functions [2]. In order to account for temporal dependency in an
autoregressive artificial neural network [24], we include the wind
energy output at previous time steps as covariates in the model. To
forecast the wind energy y; at time ¢, the model formulation is

k P d
gt =ap+ Zﬂ] maX[O, bjo + Z WijXir + Z aljy(,_l)], (1)
j=1 i=1 =1

where y; is the wind energy output at time ¢, x;; is the ith covariate
at time ¢, k is the number of neurons in the hidden layer, p is the
number of covariates collected from weather forecast vendors or
engineered by users, and d is the number of lagged wind energy out-
put to include in the model. The weights to be trained in the neural
network training are {ao, fj, bjo, wij,oclj}, where j € {1,2,--- ,k},
i€{1,2,---,p},andl € {1,2, - ,d}. As indicated in equation (1),
we use rectified linear units (ReLU) as an activation function in this
analysis. For AR-ANN and regular ANN models, we use one hidden
layer with 60 neurons and the dropout rate is set at 0.35.

For multi-step-ahead forecasting with an autoregressive artificial
neural network, we perform a one-step-ahead forecast recursively.
For example, when we try to forecast wind energy output at both
time ¢ and time ¢ + 1, we obtain §j; from equation (1), and plug 7
into the right-hand side of equation (1) to obtain §j;4+1, because the
actual y; is not observed at the time when we generate the forecast.

4.2 Recurrent Neural Network (RNN)

Recurrent neural network is a specialized neural network structure,
whose cyclic connection is designed for modeling the sequence
of events [5]. It has been used in speech recognition, text mining,
translation, and time series forecasting [3, 14]. To forecast wind
energy output y; at time ¢, we adopt the structure shown in Figure 2,
so that we can combine the sequential information of wind energy
output with the information from covariates such as forecasted
wind speed and direction at time ¢. In this work, we have two RNN
hidden layers at each time step with 30 and 20 hidden neurons in
each layer. Only one layer is drawn in Figure 2 for demonstration
purposes. The feedforward layer is constructed the same way as in
ANN or AR-ANN.
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Figure 2: Recurrent neural network structure for a one-step-
ahead forecast. The RNN hidden layer uses the long short
term memory (LSTM) structure, y; is the wind energy output
at time ¢, and X; are the covariates for time ¢.

Recurrent neural network has also been applied to sequence-to-
sequence translation [1, 23], where the "encoder-decoder” structure
is used to translate an input sequence into an output sequence with
a different length. We adapt this structure for multi-step-ahead
forecasting, where the output sequence length is the forecasting
horizon. The adapted structure is shown in Figure 3. The encoding
and decoding layers each has 15 hidden neurons.

To prepare samples for a recurrent neural network, we use the
sliding windows approach to process the time series into subse-
quences and we stack the subsequences into three-dimensional
arrays whose dimensions are observations X timesteps X features.
The number of features for the response variable series is 1 and
the number of features for the covariates series is the number of
covariates p. This preprocessing converts long time series into inde-
pendent subsequences without losing temporal information within
each subsequences. It allows easy implementation of parallelization,
in contrast to conventional time series models such as ARIMAX.

Combined
layer

Combined
layer

Figure 3: Recurrent neural network structure for a multi-
step-ahead forecast (two-step-ahead is used here for an ex-
ample). The compressed layer is encoded by a series of RNN
hidden layers from the input, and then decoded by another
series of RNN hidden layers to produce an arbitrary output
sequence length.

5 RESULTS

We test the performance of our models on the wind energy data
described in section 3 and compare them with two benchmark
models: (1) a feedforward artificial neural network that includes all
the collected covariates, and (2) an ARIMAX model that includes
the collected covariates as exogenous variables.

Prior to applying our proposed AR-ANN or RNN, we examined
the temporal pattern of the wind energy output residuals after
modeling with a feedforward artificial neural network. The au-
tocorrelation function (ACF) and partial autocorrelation function
(PACF) are shown in Figure 4, a representative figure that uses the
data from farm 1.

It is clear that the residuals are autocorrelated, indicating that
directly applying the feedforward artificial neural network has
missed important temporal information. In addition, we observe
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Figure 4: ACF and PACF for the residuals after modeling
with a feedforward artificial neural network.

that the residual PACF has two lags of obvious partial autocorrela-
tion and that the partial autocorrelation is significantly diminished
beyond lag 2. We propose that this information is indicative of the
length of historical information that we need to consider in both
AR-ANN models and RNN models. To test our hypothesis, we use
both AR-ANN and RNN models with different numbers of lags or
history sequence lengths to make one-hour-ahead forecasts for a
half-month period at the end of the dataset (2011 Dec. 15 to 2011
Dec. 31). We also check the residual ACF and PACF for the training
dataset and compare them across different lags or history sequence
lengths. The results are shown in Figure 5 through Figure 8.
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Figure 5: AR-ANN with lagl of wind energy output used as
a covariate.
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Figure 6: AR-ANN with up to lag2 of wind energy output
used as covariates.
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Figure 7: RNN with history sequence length = 1

Consistent with our hypothesis, the number of lags used in AR-
ANN being equal to 2 or the history sequence length in RNN being
equal to 2 is sufficient to remove residual autocorrelation.

We further examine whether removing residual autocorrelation
helps improve the accuracy in one-step-ahead forecasting (one-
hour-ahead in this example). The forecasting accuracy, measured
by root mean squared error (RMSE) is shown in Figure 9.

The results show that when the number of lags in AR-ANN or
the history sequence length in RNN is larger than 2, the forecasting
performance reaches a plateau, which corresponds to the complete
removal of residual autocorrelation. However, when the number
of lags or the history sequence length is smaller, and the residual
autocorrelation is not completely removed, as in Figure 5 and Figure
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Figure 8: RNN with history sequence length = 2

7 respectively, the forecasting is less accurate and might still be
improved by increasing the number of lags or history sequence
length.

RMSE across Different Historical Length (1h forecast)
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Figure 9: Average forecasting error of 7 farms across differ-
ent history sequence length (number of lags). The shortest
sequence length tested is 1 and longest is 24.

After we know the appropriate history length or number of lags
to include in the model, we can compare the forecasting perfor-
mance of our proposed AR-ANN and RNN with the feedforward
artificial neural network and ARIMAX. The results are included in
Table 1. Apparently, including historical information either through
an AR-ANN model or a RNN model can significantly improve fore-
casting accuracy over conventional ANN in one-step-ahead fore-
casting. ARIMAX, which also depends on observations at previous
time steps, achieves smaller errors compared to ANN. This obser-
vation indicates that in a one-hour-ahead wind energy forecast,
historical information plays an important role in forecasting accu-
racy.

Table 1: One-Hour-Ahead Forecasting Errors

Models | ARIMAX | ANN | AR-ANN | RNN
RMSE 0.0723 0.1701 0.0702 0.0704

Another important, yet very challenging, area in wind energy
forecasting is day-ahead forecasting, which is crucial for grid bal-
ancing and operational planning [19]. To test our models in this
application, we perform multi-step-ahead (24-hour-ahead) forecast-
ing and compare with conventional methods. ARIMAX, AR-ANN,
and RNN all depend on the wind energy output at previous time
steps to make a forecast for the next time step. Thus in multi-step-
ahead forecasting, predicted values from one-step-ahead forecast
are plugged back into the model to forecast the next step. Doing this
incurs the phenomenon called the "accumulation of error”, espe-
cially for models that depend heavily on previous response variable
values. As shown in Table 2, except for ANN, which doesn’t depend
on response variables at a previous time step to make a forecast, all
other models have increased forecasting errors. However, AR-ANN
and RNN still show superior forecasting accuracy compared to
ANN, probably because of the excellent accuracy that is achieved
in the one-step-ahead forecast.

Table 2: 24-Hour-Ahead Forecasting Errors

Models | ARIMAX | ANN | AR-ANN | RNN
RMSE 0.194 0.170 0.151 0.148

Similarly, we investigate the impact of history sequence length
or number of lags on a multi-step-ahead forecast in Figure 10. In
contrast to one-step-ahead forecasting, the longer the history that
is included in our model, the worse the performance in a multi-
step-ahead forecast. This is because models that have long history
sequence length rely more heavily on the response observations in
previous time steps and thus are more susceptible to the "accumu-
lation of error".

With the ability to perform sequence-to-sequence translation in
RNN as described in Section 4.2, we can directly choose the output
sequence length to be the forecast horizon (24 hours in this exam-
ple). This will avoid doing recursive one-step ahead forecasting
and thus the "accumulation of error". As shown for the RNN (seq-
to-seq) case in Figure 10, different input lengths have minimum
impact on forecasting accuracy when the sequence-to-sequence
translation is used. Although in this 24-hour-ahead forecasting
experiment, sequence-to-sequence translation doesn’t show supe-
rior performance compared to AR-ANN or RNN with recursive
one-step-ahead forecasting (if an appropriate history length is cho-
sen), it does provide a viable alternative in situations when the
"accumulation of errors" is severe.

6 CONCLUSIONS

In this article, we propose and apply two temporally dependent
neural network models, AR-ANN and RNN, for the wind energy
forecasting problem. Both methods are designed to capture the
temporal patterns of wind energy generation, and at the same time
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Figure 10: Forecasting errors in a multi-step-ahead forecast
across different history sequence lengths (number of lags).
The shortest sequence length tested is 1, and the longest is
24.

model the complex relationship between weather covariates and
wind energy output. The ACF and PACF analysis suggests that
residual autocorrelation is an important indicator and a potential
source of error for wind energy forecasting. The PACF plot also pro-
vides additional information for tuning the necessary length of the
history to be included in the temporally dependent neural network
models, mirroring the common practice in autoregressive moving
average (ARMA) models. Both proposed models also achieve better
forecasting performance in 1-hour-ahead and 24-hour-ahead wind
energy forecasting, compared to conventional ANN and ARIMAX.
In addition, we also use the sequence-to-sequence translation struc-
ture in RNN for multi-step-ahead forecasting, and we suggest it is
a proper alternative to avoid the "accumulation of error" phenome-
non.

The scope of this paper prevents us from extensively investi-
gating additional benefits of the proposed models. One of these
additional benefits over ARIMAX is from the computational aspect,
where the structures of both AR-ANN and RNN allow for easy
implementation of parallelization and scale up to large datasets that
contain long time series. We will explore these benefits in future
studies.
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