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ABSTRACT
Technical analysis in �nance is the discipline of graphically analysing

the price history of assets, on the premise that speci�c geometric

shapes in charts reliably foreshadow future movements. �ough

widely used in practice, both the recognition of its pa�erns and

interpretation of their meaning remain a highly subjective form of

‘domain knowledge’. We investigate the predictive value of these

visual pa�erns, applying machine learning and signal processing

techniques to 22 years of US equity data. By reframing technical

analysis as a poorly speci�ed, arbitrarily preset feature-extractive

layer in a deep neural network, we show that be�er convolution

�lters can be learned directly from the data, and provide visual

representations of the features being identi�ed.
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1 INTRODUCTION
In �nancial media, extensive a�ention is given to the study of

charts and visual pa�erns. Known as technical analysis or char-
tism, this form of �nancial analysis relies solely on historical price

and volume data to produce forecasts, on the assumption that spe-

ci�c graphical pa�erns hold predictive information for future asset

price �uctuations (Blume et al, 1994). Early research into genetic

algorithms devised purely from technical data showed promising

results, sustaining the view that there could be substance to the

practice (Neely et al, 1997; Allen and Karjailainen, 1999). Research

in �nance has typically restricted itself to the time series of closing

prices and the visuals emerging from line charts (Lo et al, 2000),

relying on kernel regression to smooth out the price process and

enable pa�ern recognition.

An equally common visual representation of price history in

�nance is the candlestick. Candlesticks encode opening price, clos-

ing price, maximum price and minimum price over a discrete time

interval, visually represented by a vertical bar with lines extend-

ing on either end. Much as with line charts, technical analysts

believe that speci�c sequences of candlesticks reliably foreshadow

impending price movements. A wide array of such pa�erns are

commonly watched for (Taylor and Allen, 1992), each with their

own pictogram and associated colourful name (‘inverted hammer’,

‘abandoned baby’, etc).

Li�le e�ort has gone into the systematic evaluation of this richer

but still purely technical dataset, and there is a very real possibility

that candlestick chartism represents a form of modern day �nancial

astrology, with just as li�le predictive prowess as horoscopes yet

somehow held in higher regard. �e human propensity towards

con�rmation bias is partly to blame: �nance’s low signal-to-noise

ratio makes it far too easy to imagine pa�erns where there are

none.

A�er de�ning a format for cross-correlating time series data

with chartist �lters (Section 2.1-2.3), we undertake a comprehen-

sive statistical assessment of the predictive prowess of the most

common candlestick pa�erns (Section 2.4). We draw on a modern

intuition for pa�ern recognition in vision and language (Bengio,

2009): we re-frame candlestick pa�erns as a form of feature engi-
neering intended by chartists to extract salient features, facilitating

the classi�cation of future returns with higher �delity than the

raw price process would otherwise allow. Feeding candlestick data

through a neural network involving separate �lters for each techni-

cal pa�ern, we classify next-day returns with the �lters implied by

chartist doctrine (Section 3.1-3.2) and set this cross-correlational

approach as a baseline to improve upon (Romaszko, 2015). We then

compare the model’s accuracy when the �lters are not preset but

instead learned by a convolutional neural network (CNN) during its

training phase (Section 3.3), and evaluate its performance against

recurrent neural network (RNN) architectures, considered the state

of the art in time series analysis (Section 3.4). Finally we assess

the signi�cance of our �ndings statically (Section 3.5) and through

time (Section 3.6), and benchmark deep learning in �nance against

alternative methods (Section 3.7).

Our results �nd li�le evidence to support the practice of chartism.

We agree with Lo et al (2000) that the distribution of future returns

conditioned on observing technical pa�erns diverges signi�cantly

from the unconditional distribution, but upon close inspection the

resulting classi�er barely outperforms guesswork. By contrast, �l-

ters learned and tested on 22 years of S&P500 price data in the same

CNN architecture yield modest gains in classi�cation accuracy.

2 EVALUATING TECHNICAL ANALYSIS
2.1 De�nition of Candlestick Data
Both the �nancial time series data and the candlestick technical

�lters used by chartists take the same form. Asset price data for a

discrete time interval is represented by four features: the opening

price (price at the start of the interval), closing price (price at the

end of the interval), high price (maximum over the interval) and

low price (minimum over the interval). �e candlestick visually

encodes this information (Fig. 1): the bar’s extremities denote the

open and close prices, and the lines protruding from the bar (the

candle’s ‘wicks’ or shadow) denote the extrema over the interval.

�e colour of the bar determines the relative ordering of the open
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and close prices: a white bar denotes a positive return over the

interval (close price > open price) and a black or shaded bar denotes

a negative return (close price < open price).

Figure 1: Candlestick representation of �nancial time series data.

We can therefore summarise the candlestick representation of

a �nancial time series of length n timesteps as a 4 × n price signal

matrix F capturing its four features. �roughout this paper we

rely on daily market data, but the methods can be extended to

high-frequency pa�ern recognition using tick data.

2.2 De�nitions of Technical Patterns
We focus on eight of the most popular candlestick pa�erns cited by

practitioners of technical analysis: the abandoned baby (2 variants),

evening star, morning star, three black crows, three white soldiers,

three inside down and three inside up. Fig. 2 provides both the

visual template associated with each pa�ern, as well as the future

price direction it is meant to presage. As before, we summarise

a technical pa�ern P of lengthm timesteps as a 4 ×m matrix TP ,
standardised for comparability to have zero mean and unit variance.

Figure 2: Eight technical pa�erns and the future direction they predict (red for

negative returns, green for positive returns).

2.3 Identi�cation by Template Matching
Matrix representations for both the template TP and equal-length,

standardised rollingwindows Fn of the full price signal F at timestep

n can be cross-correlated together to generate a time series SP
measuring the degree of similarity between the price signal and

the �lter. For a given pa�ern P , at each timestep n:

SP,n =

〈
TP
‖TP ‖

,
Fn
‖Fn ‖

,

〉
(1)

where 〈·, ·〉 is the inner product of the two matrices and ‖ · ‖ is the

L2 norm.

Our algorithm extracts the top quantile (in our study, decile and

centile) of similarity scores SP as pa�ern matches and produces a

distribution of next-day returns conditional on matching pa�ern P .

2.4 Evaluating Technical Analysis
We run several diagnostics to assess separately the informativeness

and predictive prowess of each technical pa�ern.

2.4.1 Empirical Data. �roughout our work, we use technical

(i.e. open, close, high and low price) data from the S&P500 stock

market index constituents for the period Jan 1994 - Dec 2015, cor-

responding to n = 2,182,516 entries of �nancial data in the price

signal F . �is dataset covers a representative cross-section of US

companies across a wide timeframe suitable for learning the pat-

terns, if any, of both expansionary and recessionary periods in the

stock market.

2.4.2 Informativeness. We begin by comparing the top quantiles

of the conditional returns with their unconditional counterparts,

with the view that conditioning on informative pa�erns should

yield signi�cantly di�erent distributions. Denoting by {RP
n1

t=1} the

subset of returns conditioned on matching pa�ern P and {Rn2

t=1}

the full set of unconditional returns, we compute their empirical

cumulative distribution functions F1 (z) and F2 (z). �e two-sample

Kolmogorov-Smirnov (K-S) test evaluates the null hypothesis that

the distributions generating both samples have identical cdfs, by

computing the K-S statistic:

γ =

(
n1n2

n1 + n2

)
1/2

sup

−∞<z<∞
|F1 (z) − F2 (z) | (2)

�e limiting distribution of γ provides percentile thresholds

above which we reject the null hypothesis. When this occurs, we

infer that conditioning on the pa�ern does materially alter the

future returns distribution. As an example of this approach, we

provide the empirical cdfs of both unconditional returns and returns

conditioned on the pa�ern: ‘�ree Black Crows’ (Fig. 3).

2.4.3 Predictive Prowess. Whilst these pa�erns may bear some

information, it does not follow that their information is actionable,

or even aligns with the expectations prescribed by technical anal-

ysis. Notched boxplots of both unconditional returns and returns

conditioned on each of the �lters (Fig. 4) allow us to gauge whether

the pa�ern’s occurrence does in fact yield signi�cant returns in the

intended direction.

A closer examination suggests that conditioning on 7 of the 8 pat-

terns produces no signi�cant alteration in the median of next-day
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Figure 3: Empirical cumulative distribution functions of unconditional returns and

returns conditioned on matching the pa�ern ‘�ree Black Crows’, where a match is

deemed to have occurred when the similar score SP is in its top decile.

Figure 4: Notched boxplots of the distributions of returns in basis points (one

hundredth of a percent), conditional on observing each of the technical pa�erns

(similarity score SP in its top decile). At a glance, none of the conditional distribution

medians diverge substantively from the unconditional baseline, and the distributions’

standard deviations dwarf their medians by two orders of magnitude.

returns distributions (Fig. 5). Only ‘�ree Black Crows’ produces

a conditional distribution for which the 95% con�dence interval

of the median (denoted by the notch) bears no overlap with its

unconditional counterpart. But even then, the deviation is actually

positive, the polar opposite of what chartist doctrine would imply.

Figure 5: Close-up of boxplot notches for the distributions of returns in basis points

(one hundredth of a percent), conditional on observing each of the technical pa�erns

(similarity score SP in its top decile). Almost all of the pa�erns exhibit notches that

overlap with the unconditional distribution’s, implying that the distribution medians

are not meaningfully changed by conditioning. Only ‘�ree Black Crows’ seems to be

signi�cant - as a harbinger of be�er times, despite its name.

2.4.4 Results. Table 1 reports the empirical results of the K-S

goodness-of-�t tests and top decile conditional distribution sum-

mary statistics, using daily stock data from the S&P500. �ough

several of the pa�erns do indeed bear information altering the dis-

tribution of future returns, their occurrence is neither a reliable

predictor of price movements (high standard deviation relative to

the mean) nor even, in many instances, an accurate classi�er of

direction. �e results found when the metric for pa�ern recognition

is more stringent (top centile of similarity score SP ) are reported in

Table 2, and come to the same conclusion. Conceptually, the notion

of using �lters in �nancial data to extract informative feature maps

may bear merit - but the chartist �lter layer is demonstrably an

improper speci�cation.

Table 1: Summary statistics for the next-day return distribu-
tions conditioned on matching technical patterns. A match
on pattern P is deemed to have occurred when the cross-
correlational similarity score SP is in its top decile. K-S sta-
tistics above 1.95 are signi�cant at the 0.001 level. Mean re-
turn µ for each pattern is expressed as a di�erence from the
unconditional baseline. �e incremental mean returns are
dwarfed by their standard deviation, and do not even always
move in the direction prescribed by chartism.

Pattern γ µ (bp ) σ (bp )
Unconditional 4.26 229.40

Abandoned Baby- 4.03 -4.24 224.60

Abandoned Baby+ 2.88 +4.87 227.16

Evening Star 2.53 -2.32 223.24

Morning Star 2.79 +4.86 228.15

Three Black Crows 14.28 +5.62 265.14

Three White Soldiers 12.97 -7.98 208.90

Three Inside Down 2.91 +0.45 231.62

Three Inside Up 3.27 +0.71 220.71

Table 2: Summary statistics for the next-day return distri-
butions conditioned on matching technical patterns more
stringently. A match on pattern P is deemed to have oc-
curred when the cross-correlational similarity score SP is in
its top centile.

Pattern γ µ (bp ) σ (bp )
Unconditional 4.26 229.40

Abandoned Baby- 3.29 -4.04 232.45

Abandoned Baby+ 1.27 +2.94 232.28

Evening Star 2.89 -0.27 231.76

Morning Star 1.80 +2.59 231.89

Three Black Crows 6.85 +13.09 229.40

Three White Soldiers 6.30 -11.77 203.26

Three Inside Down 1.63 +2.72 233.12

Three Inside Up 2.50 +0.13 220.75
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3 FEATURE ENGINEERING IN FINANCE
�e concept of searching for informative intermediate feature maps

in classi�cation problems has seen widespread success in domains

ranging from acoustic signal processing (Hinton et al, 2012) to

computer vision (Krizhevsky et al, 2012). Where technical analysis

uses �lters that are arbitrarily pictographic in nature, we propose

to learn layers for feature extraction from data.

We begin by spli�ing our S&P500 time series data into training

and test sets corresponding to stock prices from 1994-2004 and 2005-

2015 respectively.
1
We evaluate the performance of passing the

raw data both with and without chartist �lters, and subsequently

measure the incremental gain from learning optimal feature maps

by convolution. �e �ndings are then benchmarked against widely

recognised approaches to time series forecasting, including Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) net-

works, nearest neighbours classi�ers and support vector machines

(SVM).

3.1 Raw Data Neural Network
To address issues of scale and stationarity, we process the original 4

× n price signal matrix F into a new 12 × n price signal matrix F *,2

where each column is a standardised encoding of 3 days of price

data. We pass F * through a multilayer perceptron (MLP) involving

fully-connected hidden layers. Preliminary cross-validation experi-

ments with �nancial time series determined the network topology

required for the model to learn from its training data. Insu�cient

height (neurons per hidden layer) and depth (number of hidden

layers) led to models incapable of learning their training data (cross-

validation accuracy plateau’ing at 52.9% in-sample for a single-layer

neural network with 100 neurons). We se�led on 2 fully-connected

layers of 1000 neurons with ReLU activation functions, followed

by a so�max output layer to classify positive and negative returns.

Even so, the raw data does not lend itself well to classi�cation, gen-

eralising poorly (out-of-sample accuracy of 50.1% a�er 1000 epochs,

Table 3). Regularisation was achieved via the inclusion of dropout

(Srivastava, 2014) in the dense layers of the network, limiting the

model’s propensity towards excessive co-adaptation across layers.

3.2 Technically-Filtered Neural Network
Reframing technical pa�erns as pre-learned cross-correlational

�lters, we now standardise and stack the 8 pa�ern matrices TP ,
each of dimension 4 × 3 in our study, along the depth dimension,

producing a 4×3×8 tensorT whose inner product with standardised

windows of F yields a new 8 × n input matrix FT .
3

FT =
〈
T , F

〉
(3)

1
Our classes are de�ned as ’negative return’ and ’strictly positive return’. We there-

fore anticipate some class imbalance in the dataset, as zero return days occur (albeit

infrequently) in assets with low denomination. �e training set class imbalance is

negatively skewed (47.6% strictly positive return days, 52.4% negative return days),

against a positively skewed test set (50.9% strictly positive return days, 49.1% negative

return days). Models that learn only the training set’s bias may if anything perform

worse than random chance, as is the case with several of our benchmarks (Section 3.7).

2
�e price signal F is zero-padded along the temporal axis to preserve length n for F *.

3
As before, the price signal F is zero-padded along the temporal axis during cross-

correlation, yielding an unchanged length n for FT .

Table 3: Accuracy obtained a�er training the model using
raw data through a set number of epochs. Adding further
epochs does not help it to generalise any better.

Epochs In Sample (%) Out-of-Sample (%)

1 51.6 49.8

5 52.7 50.1

10 52.9 50.0

50 53.3 50.2

100 53.5 50.2

250 54.8 50.1

500 56.2 50.1

1000 58.0 50.1

�is new input is the result of cross-correlating the raw price

signal F with the technical analysis �lter tensorT , and can be inter-

preted as the feature map generated by technical analysis. We now

use FT as the input to the same MLP as before and look for improve-

ments in model forecasts. �e results we �nd are consistent with

Section 2: using technical analysis for feature extraction hinders

the classi�er, slightly degrading model performance (out-of-sample

accuracy of 49.5% a�er 1000 epochs, Table 4).

Table 4: Accuracy obtained a�er training the model using
technical analysis �lters through a set number of epochs.
�e technical analysis �lters produce feature maps with
even less discernible structure.

Epochs In Sample (%) Out-of-Sample (%)

1 50.4 49.5

5 52.2 49.5

10 52.4 49.3

50 52.4 49.3

100 52.5 49.5

250 52.5 49.4

500 52.7 49.5

1000 52.8 49.5

3.3 Convolutional Neural Network
Wenow deepen the neural network by adding a single convolutional

layer with 8 �lters to our earlier MLP (architecture detailed in

Table 5). �e CNN �nds much greater structure in its training data

than the technically-�ltered MLP could, and generalises slightly

be�er than both earlier iterations (out-of-sample accuracy of 50.8%

a�er 1000 epochs, Table 6). Crucially, unlike the earlier models,

the CNN’s in-sample and out-of-sample accuracy rise together,

suggesting that the feature representation being learned may have

the potential to generalise successfully. �at being said, even deep

learning yields only very marginal gains in predictive prowess over

pure chance, calling into question whether future price inference

from past price - a core tenet of technical analysis - can be achieved

at all.

�e convolution �lters learned by the network provide a basis

for feature extraction. In particular, the convolutional layer’s �lters

de�ne patches whose convolution with zero-padded raw input data

minimised the model’s in-sample categorical cross-entropy. We
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Table 5: Details of the CNN architecture. �e number of �lters in the convolution layer was deliberately kept low (8) and their
dimensions (4×3) match the technical patterns used in Section 3.2, to enable like-for-like comparability with the technical
�lter approach.

# Layer Units Activation Function Dropout Filter Shape Outgoing dimensions

0 Input - - - - (input) [4 × 3]

1 Convolutional 8 ReLU - [4 × 3] [8 × 12]

3 Dense 1000 ReLU 0.5 - [1000]

4 Dense 1000 ReLU 0.5 - [1000]

5 Softmax - - - (output, 2 classes) [2]

Table 6: Accuracy obtained a�er training a deep neural net-
work with a single convolution layer through a set number
of epochs.

Epochs In Sample (%) Out-of-Sample (%)

1 51.6 49.2

5 52.7 50.0

10 52.9 50.3

50 53.3 50.4

100 53.7 50.5

250 54.8 50.5

500 56.1 50.7

1000 57.3 50.8

produce a mosaic of these �lters as Hinton diagrams (Fig. 6) and

visualise them in the language of technical analysis as candlestick

pa�erns (Fig. 7 and 8) by reversing the convolutional �lters, turn-

ing them into cross-correlational templates whose occurrence is

informative for �nancial time series forecasting. Unlike technical

pa�erns however, these templates have no set meaning: the pur-

pose of individual neurons in a convolutional layer is not readily

interpretable.

Figure 6: Weight-space visualisation as Hinton diagrams for the 8 cross-correlational

�lters learned from the �rst layer of the CNN. �ese cross-correlational templates

were obtained by reversing the �lters of the convolutional layer.

3.4 Recurrent Neural Network
Deep learning for time series analysis has typically relied on re-

current architectures capable of learning temporal relations in the

data. In particular, Long Short-Term Memory (LSTM) networks

have achieved prominence for their ability to memorise pa�erns

across signi�cant spans of time (Hochreiter and Schmidhuber, 1997)

Figure 7: Hinton diagram of the fourth cross-correlational �lter learned in the �rst

layer of the CNN. �e relative values of the standardised open, close, low and high for

each column in the �lter de�ne, in a chartist sense, a speci�c candlestick sequence (or

patch thereof, in instances where the �lter’s open or close is incompatible with the

high-low range) which the neural network extracted as informative for time series

forecasting.

Figure 8: Candlestick pa�ern approximations of the cross-correlational �lter mosaic.

by addressing the vanishing gradient problem. A thorough RNN

architecture search (Jozefowicz et al, 2015) identi�ed a small but

persistent gap in performance between LSTMs and the recently-

introduced Gated Recurrent Unit (GRU, Chung et al, 2014) on a

range of synthetic and real-world datasets. To benchmark the ef-

fectiveness of our approach against the state of the art, we feed the

processed price signal matrix F * through recurrent neural networks
built using a preliminary layer of 8 RNN units (LSTM and GRU in

separate experiments), followed by 2 dense layers of 1000 neurons

with dropout as before. RNNs perform be�er than the MLPs on

raw and technically �ltered data (out-of-sample accuracies of 50.6%

and 50.7% a�er 1000 epochs for LSTM and GRU respectively, Tables

7 and 8), but fall short of matching the performance of the convo-

lutional approach. �e GRU architecture marginally outperforms

the LSTM model on our �nancial data, with the further bene�t of

greater computational e�ciency (17% faster to train).

3.5 Signi�cance of Model Results
To investigate whether the predictive performance of the 3 neural

network classi�ers is statistically signi�cant, we derive the area

under the curve (AUC) of each model’s receiver operating charac-

teristic curve (ROC), and exploit an equivalence between the AUC
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Table 7: Accuracy obtained a�er training a deep neural net-
work with a single LSTM layer through a set number of
epochs.

Epochs In Sample (%) Out-of-Sample (%)

1 51.4 49.8

5 52.5 50.0

10 52.7 50.0

50 53.0 49.8

100 53.1 50.1

250 53.4 50.2

500 54.3 50.4

1000 54.9 50.6

Table 8: Accuracy obtained a�er training a deep neural net-
work with a single GRU layer through a set number of
epochs.

Epochs In Sample (%) Out-of-Sample (%)

1 51.6 49.2

5 52.7 50.0

10 52.7 49.7

50 53.1 50.4

100 53.3 50.3

250 54.0 50.4

500 55.4 50.6

1000 56.5 50.7

and Mann-Whitney-Wilcoxon test statistic U (Mason and Graham,

2002):

AUC =
U

nPnN
(4)

where nP and nN are the number of positive and negative returns

in the test set, respectively. In our binary classi�cation se�ing,

the Mann-Whitney-Wilcoxon test evaluates the null hypothesis

that a randomly selected value from one sample (e.g., the subset

of test data classi�ed as positive next-day returns) is equally likely

to be less than or greater than a randomly selected value from the

complement sample (the remaining test data, classi�ed as negative

next-day returns). Informally, we are testing the null hypothesis

that our models have classi�ed at random. U is approximately

Gaussian for our sample size, so we compute each model’s stan-

dardised Z -score and look for extreme values that would violate

this null hypothesis.

Z =
U − µU
σU

(5)

where:

µU =
nPnN

2

(6)

and

σU =

√
nPnN (nP + nN + 1)

12

(7)

Table 9 provides the AUC,Z -statistic and signi�cance of eachmodel,

where signi�cance measures the area of the distribution below Z .
We disregard signi�cance for negative Z scores (as is the case for

the technically-�ltered neural network) as they imply classi�ers

that performed (signi�cantly) worse than random chance. Learn-

ing neural network �lter speci�cations via convolution yields a

signi�cant boost to predictive prowess over the baseline model of

Section 3.1 and technically-�ltered variant of Section 3.2, and also

compares favourably with the recurrent architectures of Section

3.4.

Table 9: AUC, Z-statistic and signi�cance level for the neural
network classi�ers.

Model AUC (%) Z Significance

NN-Raw 50.2 2.267 0.9881

NN-Technicals 49.4 −10.773 −

CNN 51.0 18.677 > 0.9999

RNN-LSTM 50.8 14.534 > 0.9999

RNN-GRU 50.9 16.907 > 0.9999

3.6 Interpreting Accuracy over Time
In this section, we investigate potential failure modes in our best-

performing classi�ers: the CNN and RNN-GRU. We evaluate model

accuracy over 3-month rolling windows of the test set to identify

periods of time where the classi�ers struggle, and �nd a divergence

in the regions where the convolutional and recurrent approaches

underperform (Fig. 9).

Figure 9: 3-month rolling mean of CNN and RNN-GRU model accuracy over the test

window. �e models struggle to varying degrees with periods of systemic uncertainty

such as the global �nancial crisis of 2008, US debt-ceiling crisis of 2011 and Eurozone

debt crisis of 2012.

In particular, the RNN architecture handles the global �nancial

crisis (Q4-2008) far be�er than the CNN. Conversely, convolution

outperforms recurrence in periods of stable market growth such

as 2013. Both models dip markedly, and synchronously, below 50%

following the US debt-ceiling crisis (Q3-2011) and the Eurozone
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sovereign debt crisis (Q2-2012), suggesting some underlying sensi-

tivity to systemic risk. Nevertheless, the divergent e�cacy of the

two approaches raises the prospect of be�er performance through

ensemble modelling or joint CNN-RNN architectures, presenting

further avenues for investigation.

3.7 Performance Benchmarks
Deep learning has garnered signi�cant a�ention in recent years

for its ability to outperform alternative methods, se�ing the state-

of-the-art in computer vision and speech recognition benchmarks.

�e lack of commonly-agreed datasets such as MNIST for digit

recognition or ImageNet for image classi�cation means �nance

has lacked a stable backdrop for model benchmarking. For our

purposes, we propose the use of the S&P500 technicals dataset for

Jan 1994 - Dec 2015 as a baseline against which to evaluate other

classi�ers and benchmark deep learning in �nance.

3.7.1 k-Nearest Neighbours (k-NN). We begin with a range of

nearest-neighbours classi�ers, labeling each day of the test set with

the most frequently observed class label (positive or negative next-

day return) in the k training points that were closest in Euclidean

space.

3.7.2 Support Vector Machines (SVM). SVMs have been applied

to �nancial time series forecasting in prior literature, and achieved

moderate success when the input features were not raw price data

but hand-cra�ed arithmetic derivations thereof called technical

indicators (Kim, 2003). We report SVM performance under di�erent

kernel assumptions (linear and RBF), where the model hyperparam-

eters (penalty parameter C , RBF kernel coe�cient γ ) were selected
by cross-validation on a subset of the training data.

3.7.3 Random Forests (n-RF). In their study of European �nan-

cial markets, Ballings et al (2015) evaluated the classi�cation accu-

racy of ensemble methods against single classi�ers. �eir empirical

work highlighted the e�ectiveness of random forests in classifying

stock price movements and motivates their inclusion in our list of

benchmarks, under varying assumptions for the number of trees

hyperparameter n.

3.7.4 Summary. �e results summarised in Table 10 underscore

the scale of the challenge for pa�ern recognition in �nance: deep

learning achieved the best results but only by a small margin, and

none of the methods achieved accuracies materially distinctive from

guesswork.

4 CONCLUSION
Our results present to our knowledge the �rst rigorous statistical

evaluation of candlestick pa�erns in time series analysis, using

normalised signal cross-correlation to identify pa�ern matches. We

�nd no evidence of predictive prowess in any of the pictograms,

and suspect that the enduring quality of such practices owes much

to their subjective and hitherto unveri�ed nature. Nevertheless,

it is not inconceivable that price history might contain predictive

information, and much of quantitative �nance practice relies on el-

ements of technical pa�ern recognition (e.g., momentum-tracking)

for its success. �rough a deep learning lens, technical analysis

Table 10: Benchmark performance across a range of super-
vised learning models trained on S&P500 technical data for
Jan 1994 - Dec 1994 and tested on Jan 2005 - Dec 2015.

Model Accuracy (%) AUC (%) Z Significance

NN-Raw 50.1 50.2 2.267 0.9881

NN-Technicals 49.5 49.4 −10.773 −

CNN 50.8 51.0 18.677 > 0.9999

RNN-LSTM 50.6 50.8 14.534 > 0.9999

RNN-GRU 50.7 50.9 16.907 > 0.9999

1-NN 50.0 50.0 0.020 0.5080

10-NN 48.0 50.1 1.215 0.8874

100-NN 50.4 49.9 -2.270 −

Linear SVM 50.5 49.9 -2.061 −

RBF SVM 49.9 49.8 -2.416 −

10-RF 50.0 49.9 -1.082 −

50-RF 49.9 49.8 -2.929 −

100-RF 49.9 49.9 -2.793 −

is merely an arbitrary and incorrect speci�cation of the feature-

extractive early layers of a neural network. Even within relatively

shallow architectures, learning more e�ective �lters from data en-

hances performance - though only up to a point. �e predictive

information embedded in price history appears limited, and even

state-of-the-art techniques in pa�ern recognition remain subject to

that upper bound.
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