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ABSTRACT
Behavior initiation is a form of leadership and is an important aspect of
social organization that a�ects the processes of group formation, dynamics,
and decision-making in human societies and other social animal species. In
this work, we formalize the Coordination Initiator Inference Problem
and propose a simple yet powerful framework for extracting periods of
coordinated activity and determining individuals who initiated this coordi-
nation, based solely on the activity of individuals within a group during
those periods. �e proposed approach, given arbitrary individual time
series, automatically (1) identi�es times of coordinated group activity, (2)
determines the identities of initiators of those activities, and (3) classi�es
the likely mechanism by which the group coordination occurred, all of
which are novel computational tasks. We demonstrate our framework
on both simulated and real-world data: trajectories tracking of animals
as well as stock market data. Our method is competitive with existing
global leadership inference methods but provides the �rst approaches for
local leadership and coordination mechanism classi�cation. Our results are
consistent with ground-truthed biological data and the framework �nds
many known events in �nancial data which are not otherwise re�ected in
the aggregate NASDAQ index. Our method is easily generalizable to any
coordinated time-series data from interacting entities.

CCS CONCEPTS
•Information systems→ Spatial-temporal systems; Data mining;
•Applied computing→ Sociology; Economics;

KEYWORDS
leadership, spatio-temporal data, collective behavior, in�uence,
social networks, coordination, initiation

1 INTRODUCTION
Who is the trend-se�er whose opinion many follow at the moment?
Which zebra initiated the �ight from a lion? Whom does the ele-
phant herd follow to water? In all these scenarios, the initiator
might not be the one who is speaking the loudest or positioned
at the front of the group a�er the group has already agreed to
follow [11, 30]. �us, in order to identify those initiators or trend-
se�ers, we must also determine the moment of the group’s decision
to follow.
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Coordination Initiator Inference Problem: An agree-
ment of a group to follow a common purpose is manifested
by its coalescence into a coordinated behavior. �e process
of initiating this behavior and the period of decision-making
by the group members necessarily precedes the coordinated
behavior. Given time series of group members’ behav-
ior, the goal is to �nd these periods of decision-making
and identify the initiating individual, if one exists.

Initiating a group’s behavior is a form of leadership [33, 37].
Leadership is an important aspect of the social organization, for-
mation, and decision-making of groups of people in online and
o�ine communities, as well as other social animals. Understanding
the dynamics of emerging leadership allows researchers to gain
insights into how social species make decisions. Until recently,
many works de�ned leaders by their physical or behavioral char-
acteristics rather than by observing processes of interaction [24].

Figure 1: A high-level overview of the proposed framework

�e availability of data from physical proximity sensors, GPS,
and the web opens up the possibility of measuring leadership as
the process of initiation in online activities, face-to-face human in-
teractions, animal populations, and aggregate social processes such
as economic activity. �is paper presents the new computational
problem of inferring leader identity in the context of successful
initiation of coordinated activities among groups of individuals
or other entities, as well as proposes the �rst automated method
for unsupervised leader identi�cation. �e method uses only time
series activity data of entities, with no additional information. �e
proposed approach automatically determines (1) the time interval
of group coordination, (2) the time when the (possibly implicit)
decision for that coordinated activity was made, (3) the identity
of the coordination initiator, and (4) the mechanism by which the
group came to follow the initiator.
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1.1 Related work
Coordinating pa�erns of individual activity is a challenge that
all social organisms face. Diverse strategies–from democratic to
dictatorial–have emerged to allow members of groups to reach con-
sensus [7]. Leadership plays a key role in organizing the collective
(i.e. group) behaviors of social organisms ranging from humans [11]
to hymenoptera [36]. It potentiates complex pa�erns of coopera-
tion and con�ict (e.g., lions [16], hyaenas [4], meerkat [23], chim-
panzees [12], humans [13]), organizes group movements [8, 11],
and may prevent free-riding [18].

In the context of group behavior and decision-making in biology
and sociology, leaders are individuals who successfully induce a
group of others to follow them to a common goal, state, or behav-
ior [8, 25, 33, 37]. Biological studies showed that leaders may be
context-speci�c [8, 29] and the important initiators of particular
group activities are not necessarily the individuals found at the top
of their group’s social dominance hierarchy [5, 31].

Substantial interest currently exists in identifying leaders and
determining how they in�uence the behavior of others in their
social environment. Previous work in several domains de�ned
leadership according to physical characteristics (e.g., size, sex [37]),
positions in location-based social networks [26], rule-based models
[29], physical trajectory and association pa�erns [2, 22].

Computationally, most previous work uses a global notion of
leadership and creates a global, static leadership ranking over the
entirety of the input data [3, 14]. Other domain-speci�c methods
infer leadership from implicit pairwise dyadic dominance or leader-
follower interactions [2, 21, 26]. Some methods de�ne an explicit
network over the dyadic interactions or use a known network
topology [35] and use network measures, such as PageRank and
HITS, or cascade size to identify leaders [3].

Leadership has also been studied in explicit social network set-
tings. From a social network perspective, leaders can be character-
ized as in�uential individuals who have many followers that imitate
the leader’s actions [14], and, thus, successfully take a group from
one behavioral state to another. Much of the computational work
has focused on the problem of in�uence maximization (IM)–i.e.
how individuals are able to maximize their impact on the behav-
ior of the group as a whole by iteratively a�ecting local network
neighborhoods [15, 19]. �is approach assumes that the network
structure is known.

�ere is a clear gap between the biosociological de�nitions
of leadership in group decision-making and the existing compu-
tational approaches. Currently, there are no computational ap-
proaches that (1) view leaders as initiators of group behavior
change, which can (2) identify the timing of the process of the
change initiation and the group’s decision-making in (3) arbitrary
contexts, under (4) a variety of leadership models.

1.2 Our contributions
In this paper, we focus on the de�nition of leadership as the initia-
tion of coordinated activities. We aim to close the gap between the
biosociological view of the role of leaders in group decision-making,
the computational formalism, and methodology.

�erefore, the �rst part of our contribution is establishing and
formalizing this new computational problem of coordination

initiation inference. We call it the Coordination Initiator
Inference Problem. Our formulation is a generalization of many
related leadership and initiation inference computational problems.
We explicitly relate existing leadership and in�uence propagation
problems as special cases of our formulation. �e new formulation
uses only the time series of individual behavior as input, with no
assumption of additional information such as demography, prior
history, dominance hierarchy, or a network structure. �e problem
formulation aims to identify di�erent local instances of behavior
initiation, allows the identity of the initiator to be instance-speci�c,
and makes no assumption on the leadership or behavioral model.

Our additional contribution is in proposing a computational
solution framework to this new Coordination Initiator In-
ference Problem. We propose a general, scienti�cally grounded,
unsupervised, and extendable framework with few assumptions
for identifying individuals who lead a group to a state of coordi-
nated activity (or, more generally, an entity that induces group
coalescence). Our framework is capable of:
• Detecting coordinated activity events: discovering coordi-

nation intervals and decision-making periods leading to that
coordination;

• Identifying initiators: identifying the initiators of this coordi-
nated behavior, that is, the individuals who succeeded in leading
the group to coordination, speci�cally locally to each coordina-
tion instance; and

• Classifying the group coordination model: characterizing
the type of the group’s transition behavior to coordination ac-
cording to interpretable, dynamic models.
We demonstrate the framework’s ability to analyze leadership in

coordinated activity on synthetic and real datasets over several do-
mains. We compare our framework with state-of-the-art methods
for leadership identi�cation for the special cases of our problem
where such methods are applicable. For many instances of our
new problem, there are no existing methods. We demonstrate that
existing solutions fail and do not extend to these instances. We use
synthetic simulated data to validate each aspect of the framework.
We analyze two biological datasets – GPS tracks of a baboon troop
and video-tracking of �sh schools, – as well as stock market closing
price data of the NASDAQ index. �e results are consistent with
ground-truthed biological data. Moreover, the framework �nds
many known events in �nancial data, which are not otherwise
re�ected in the aggregate NASDAQ index. Our approach is easily
generalizable to any coordinated activity in time series data of
interacting entities.

2 PROBLEM FORMALIZATION
Given a collection of time series, we want to �nd initiators of
highly coordinated pa�erns. To formally state the Coordina-
tion Initiator Inference Problem, we need to formalize notions
of “coordination” and “initiation.”

First, we de�ne an intuitive notion of a following relation,
as “two individuals performing the same sequence of actions (or
generating time series values) with some �xed delay.” Formally:

De�nition 2.1 (following relation). Let U = (~u1, . . . , ~ut , . . . )
and W = (~w1, . . . , ~wt , . . . ) be m-dimensional, arbitrary-length
time series. If for all t ∈ N, there is a �xed time delay ∆t ∈ Z+∪ {0}
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such that ~wt = ~ut+∆t , then U followsW denoted asW � U . We
denoteW ≺ U if ∆t > 0.

Lemma 2.2. Let U andW be time series such thatW � U and
U �W , thenU andW are equivalent time series denotedU ≡W .

Proof. �ere are two cases when both W � U and U � W .
First, W = U and U = W (that is, ∆t = 0 in both following
relations). Clearly, W ≡ U . Second, W ≺ U with ∆tw > 0 and
U ≺ W with ∆tu > 0. �en, by de�nition, ~wt = ~ut+∆tw and
~ut = ~wt+∆tu . �erefore, ~wt = ~wt+∆tw+∆tu . �us, if W � U and
U � W thenW � W (and similarly U � U ). �us, the two time
series are identical periodic with a di�erent starting point and
therefore equivalent.

�

Lemma 2.3. �e following relation is a partial order over time
series [10].

Proof. Antisymmetry: ifW � U and U �W , thenW ≡ U by
Lemma 2.2. �e following relation is also trivially re�exive and
transitive, which, by de�nition is a partial order.

�

Next, coordination, or intuitively “all individuals perform-
ing the same sequence of actions, at possibly varying delays,” is
formally de�ned as:

De�nition 2.4 (Coordination). Given a set ofm-dimensional
time series U = {U1, . . . ,Un }. �e set U is coordinated at time
t if for every

(n
2
)

pairs Ui ,Uj ∈ U , either Ui ≺ Uj or Uj ≺ Ui .
�e coordination interval is the maximal contiguous time interval
[t1, t2] such thatU is coordinated for every t ∈ [t1, t2].

Finally, the initiator is intuitively “an individual who �rst
performs a sequence of actions, and all other individuals follow,”
formally de�ned as:

De�nition 2.5 (Initiator). Let U = {U1, . . . ,Un } be a coordi-
nated set ofm-dimensional time series within some coordination
interval [t1, t2]. �en the time series L ∈ U is the initiator time se-
ries for the coordination interval if for each time seriesU ∈ U \{L},
L ≺ U .

We are now ready to precisely state the problem of identifying
the individual who initiates a coordinated behavior:

Problem 1: Coordination Initiator Inference Problem
Input :SetU = {U1,U2, . . . ,Un } of time series.
Output :A coordination interval [t1, t2] and the initiator time

series L ∈ U that initiated the coordination.

2.1 Useful observations
LetU be a coordinated set of time series and L ∈ U be the initiator.
Since U is a partial order set and ∀Ui ∈ U , L ≺ Ui , then, by
de�nition, L is the minimal element. Moreover,U is a linear order
set since for every pair Ui ,Uj ∈ U , either Ui ≺ Uj or Uj ≺ Ui .

De�nition 2.6 (Following network). LetU = {U1, . . . ,Un } be
a set of time series. �e following network G = (V ,E) is de�ned as
a directed graph where the set of nodes V has a one-to-one corre-
spondence to the set of time seriesU , and each edge in E represents
a following relation between two time series: ∀Ui ,Uj ∈ U the
edge ei, j ∈ E if Uj ≺ Ui .

Recall that PageRank [6] score, πi , of a node i in a network G is
de�ned as follows:

πi = d
∑
k ∈Ni

ek,iπk/|Ni | + (1 − d ) (1)

Where πi ∈ [0, 1], d ∈ (0, 1] is a constant number, ek,i ∈ {0, 1}
is one if ek,i ∈ E, and Ni is a set of neighbor nodes of i such that
k ∈ Ni if ek,i ∈ E.

Lemma 2.7. Let G = (V ,E) be a following network of time series
setU = {U1, . . . ,Un }. IfUi � Uj then πi ≥ πj .

Proof. By transitivity, ifUj followsUi then the followers ofUj
are also the followers of Ui . �us, since ∀k ∈ Nj , Uj � Uk and
Ui � Uj , then Nj ⊆ Ni . Hence, πi − πj = d

∑
k ∈Ni \Nj ek,iπk ≥

0. �

As a corollary of Lemma 2.7, since all the time series follow
the initiator L within the coordination interval [t1, t2], then L has
the highest PageRank score inU during that coordination period.
Moreover, Lemma 2.7 allows us to infer the order of following
among the time series within the coordination period, as de�ned
by the PageRank values.

3 METHODS
In this section, we present a Framework for Leader Identi�cation
in Coordinated Activity (FLICA) as the solution for the Coordi-
nation Initiator Inference Problem. On real data, the above
formalization is very restrictive, so we relax the exact follow-
ing relation, and full coordination to identify ‘following’ and
partial ‘coordination’ in real applications.1 Furthermore, multi-
ple coordination events o�en exist within a set of real time series
data. Constructing a single aggregated network would not capture
the dynamics of these events. �erefore, FLICA uses a dynamic
network approach.

Figure 1 shows the framework overview. At each time step,
we infer following relations to construct a sequence of following
networks. We then use network density to detect intervals of
coordination, and the time series of PageRank values to identify
the initiators of these coordination intervals.

3.1 A working example
Figure 2 presents a key example and a brief introduction to our
framework, on real GPS trajectory data of olive baboons (Papio
anubis). Figures 2(b)-2(c) show the leadership of movement of the
group by baboon ID3 (Black). Figure 2(d) shows the ‘following’
network in the coordination interval. Individual ID3 has the largest
PageRank in the �rst two snapshots but the PageRank of individual
ID1 (Blue) surpasses ID3 when the network is ‘coordinated’ (e.g.
1However, FLICA using PageRank necessarily provides an exact solution to the Co-
ordination Initiator Inference Problem.
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(b) t=50 (c) t=100 (d) t=250

Figure 2: PageRank (top) and density (middle) of the ‘follow-
ing’ network over time for an event of baboons’ movement
which initiates by ID3. (Bottom) �e locations of individu-
als over three di�erent time steps (t = 50, 100, 250), with the
‘following’ network, and PageRank indicated by node size.

moving together). If we measure the initiator ranking a�er the
network has coalesced, then we miss that ID3 initiated coordination
and ‘built’ the network in the pre-coordination interval (to the le�
of the �rst do�ed red line).

3.2 Following relation inference
For a (U ,Q ) pair of time series, we use Dynamic Time Warping
(DTW) [27] to measure whether U follows Q . DTW is shown to
perform be�er than several other methods in inferring following
relation in time series [21] and it is tolerant to noise [28]. Let
PU ,Q be a sequence of index pairs (i, j ) which comprise the DTW
optimal warping path of (U ,Q ). We compute the mean of the
signum di�erence over this sequence of index pairs:

s(PU ,Q ) =

∑
(i, j )∈PU ,Q sign(j − i )

|PU ,Q |
(2)

�is function measures the extent of warping between two time
series. If time series cannot be shi�ed one-onto-the-other with a
consistent positive or negative sign, |s(PU ,Q ) | ≈ 0, then there is
no following relation between U and Q . When s(PU ,Q ) is positive,
Q follows U , otherwise, U follows Q .

3.3 Dynamic following network inference
�e set of n m-multidimensional time series D (e.g., a matrix of
size [n ×m × t∗]), a window size parameter ω, and a window shi�
parameter δ (default is 0.1ω) are the inputs for our framework.

Let the ith time interval be given by: w (i ) = [i × δ , i × δ + ω].
For each w (i ), we extract a set of sub time series Qi from D. �e
Qi is the [n ×m × ω] dimensional matrix of the time series set.
�en we construct a following network G = (V ,E) as de�ned in

De�nition 2.6. �e nodes represent the time series from Qi and E
is a set of edges between time series nodes such that if U ,W ∈ Qi
and U follows W according to Eq. 2, then eU ,W ∈ E with the
edge weight |s(PU ,W ) |. We calculate a following network for each
w (i ) to construct a dynamic following network G∗ = (V ,E∗). �e
pseudo code is given in Procedure 1.

Procedure 1: CreateDyFollowingNetwork
input :A time series set D, ω, and δ
output :A n × n × t∗ adjacency matrix E∗.
K ← (t ∗ − ω )/δ ;
for i ← 1 to K do

/* current time interval */

w (i ) = [(i − 1) × δ, (i − 1) × δ + ω] ;
/* SubTimeSeries(D, w (i )) returns all sub time

series in D within the interval w (i ) */

Qi ←SubTimeSeries(D, w (i ));
E ←CreateFollowingNetwork(Qi ) ;
/* Set all edges within the time interval

[(i − 1) × δ, i × δ ] to be similar */

E∗t∈[(i−1)×δ ,i×δ ] ← E ;
end
Q ←SubTimeSeries(D, [K × δ, t ∗]);
E ←CreateFollowingNetwork(Q) ;
E∗t∈[K×δ ,t ∗] ← E ;

3.4 Coordination intervals detection
Note that network density of the following network serves as the
measure of the extent of coordination over all time series pairs (by
De�nition 2.4, during the coordination interval every pair has a
following relation.) We can use this observation to identify times
of approximate coordination.

Given a time series of network densities, denoted by d, over a
dynamic following network G∗, and a density threshold parameter
λ, the time interval [ti , tj ] is a λ-coordination interval if d(t ) > λ
for all t ∈ [ti , tj ]. �e pre-coordination interval of coordination
[ti , tj ] is the interval [tk , ti − 1], where the discrete derivative
d(t )−d(t−1) ≥ 0 for all t ∈ [tk , ti −1]. Together, these intervals are
one coordination event, represented by the 3-tuple of time indices
I = (tk , ti , tj ). �e collection of coordination events is a setC = {Il }.
All complete event intervals [tk , tj ] are mutually disjoint in C , and
|C | denotes the total number of 3-tuples. For the remainder of our
framework, we measure local leadership only on these events in
the set C . To reduce the number of intervals generated near the
threshold λ, we apply a greedy merging of nearby coordination
intervals (taking the range from the window size ω).

3.5 Ranking comparison
On each coordination event I = (tk , ti , tj ), let RI be some ranking
of individuals within the pre-coordination interval [tk , ti − 1]. We
focus on ranking within pre-coordination because this is the inter-
val where coordination is initiated. �e global rank order, denoted
by R̂, is the average of all RI where I ∈ C .
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We measure initiator ranking according to three di�erent
methods: PageRank [6], velocity convex hull (VCH), and posi-
tion convex hull (PCH). Recall, that by Lemma 2.7, if U follows V ,
then the PageRank of U is less than that of V . �us, the initiator is
expected to have the highest PageRank. VCH measures how o�en
an individual moves faster than others. It represents a model of
leadership for movement. �is model can be found in many social
species [11, 33]. PCH measures how o�en an individual moves to
an area before others. For example, in a �ock model [2], a leader is
positioned at the front of the group’s trajectory.

3.6 Leadership model features
Let the global rank ordering for PageRank be denoted by R̂pr , for
VCH by R̂v , and for PCH by R̂p . To measure global leadership in
our framework, we order individual nodes i based on initiation
support with respect to one of these ranking methods, R•, I , over
all coordination events I ∈ C . For example, Rpr, I is PageRank-
rank-ordered list at the event I . If an individual i is at 1st rank at
I , then (i, 1) ∈ Rpr, I ; i is an initiator. �e initiation support for a
node i is the fraction of coordination events at which it was ranked
1 (by a ranking measure R•):

sup• (i ) =
���{∀I ∈ C (i, 1) ∈ R•, I }���

|C |
(3)

We use the Kendall rank correlation coe�cient τ () [20] to com-
pare event-local and global rank-orders. To compare global and
local rank orders, we use the mean Kendall rank correlation over
all coordination events against the global: corr• =

∑
I ∈C τ (R̂•,R•, I )

|C | .
For example, corrv compares local and global velocity convex hull
rank orders.

Similarly, we compute the mean Kendall correlation between
local rankings associated with di�erent measures (e.g. VCH, PCH):
corr•,• =

∑
I ∈C τ (R•, I ,R•, I )

|C | .
corr• formalizes our intuition that leaders consistently move

outside of the spatial extent (corrp ), or the distribution of velocity
over the population (corrv ). By comparing the global vs. local
correlation in rank ordering, we measure the stability of the global
ranking is over time.

corr•,• measures the relationship between higher-order graph
structure and simple time series features. Using this measure, we
can gain a be�er understanding of the high-level aspects of initiat-
ing coordination. For example, we see whether changing velocity
(corrv,pr ), or position (corrp,pr ) within the group is correlated
with network rank position.

4 EXPERIMENTAL SETUP
We evaluate our framework on eight synthetic movement trajectory
models and three real datasets.

4.1 Simulation models
4.1.1 Dictatorship model (DM). In this model, we �x a single

initiator who initiates movement from initial positions of the pop-
ulation. At the start of the pre-coordination interval, the initiator
moves in a �xed direction and acceleration. Other individuals
wait for a randomly sampled lag, before following the initiator at

a �xed acceleration (with sampled noise in the heading). A�er a
�xed duration of coordinated movement over the entire population,
individuals decelerate at random, until stopping. �e Switching
Dictatorship model (DM-S) selects two �xed individuals over each
trial: a single individual as an initiator during pre-coordination,
and another single individual as ‘initiator’ during coordination.

4.1.2 Hierarchical model (HM). �is model is a variation of DM,
where we �x a number of individuals (n=4) to follow the previous
individual in the sequence, a�er a sampled lag. �e remainder
of individuals in the population follow exactly one of these high-
ranking individuals, allocated in decreasing proportion per rank.
�e Switching Hierarchical model (HM-S), similarly to DM-S, se-
lects unique pairs of individuals for each hierarchy level, switching
a�er the pre-coordination interval as in DM-S.

4.1.3 Event-based model (EM). �is model is a variation of the
Dictatorship model where each coordination event has a di�erent,
unique initiator. For example, in one of our applications, a troop of
baboons may follow an initiator to food in the morning, and follow
a di�erent initiator in the evening to the sleeping site. No existing
methods can infer these two situations except our framework.

4.1.4 Initiator model (INIT-k). In this model, we �x k initiators
who initiate movement from random initial positions of the popu-
lation. At the start of the pre-coordination interval, all initiators
move on a single target. Non-initiators move in randomly sampled
directions with a �x velocity, then follow their initiator a�er a
random time lag. A�er the pre-coordination period, all individuals
move toward a single target, without following their initiator. We
run simulations for INIT-1 and INIT-4 initiator models.

4.1.5 Crowd model (CM). �is model [29] is a collective move-
ment model where k (=4) informed individuals move toward a
target, and the remaining (=16) uninformed individuals move in a
linear combination of a direction toward the group’s centroid, and
the average direction of the group.

4.1.6 Linear Threshold model (LT). �is model [19] initiates
individual movement by propagation of a linear threshold process
on the dynamic network, de�ned by the k-nearest neighbors at the
current time-step. �e model is parameterized by ρ, the proportion
of these k neighbors required to be infected in order to initiate
movement. Once activated, the individual follows a single initiator.
�e initial probability of activation for each individual is 0.5. We
explore the parameter space on combinations of: k ∈ {3, 5, 10} and
ρ ∈ {0.25, 0.50, 0.75}.

4.1.7 Independent Cascade model (IC). �is model [19] is an-
other propagation process similar to LT. At each time step, each
active individual moves toward the initiator and independently
a�empts to activate its k-nearest neighbors with the probability of
ρ. If the individual fails to activate a neighbor, it cannot a�empt
to activate the same neighbor again. We explore the same sample
parameter space as in the LT model.

4.1.8 Random model. In this model, there is no ‘following’ rela-
tions. At the start of the pre-coordination interval, all individuals
start moving to a �xed direction, independently of others in the
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population. We expect the relative positions of individuals to yield
some following relations only by chance.

4.2 Synthetic trajectory simulation
For each of the above models, we generate a trial of synthetic data
consisting of 20 individuals, and 20 separate coordination events,
for a total of 12,000 total time-steps. Each coordination event has
pre-coordination and coordination intervals of 200 time-steps each.
Following the coordination interval is another 200 time steps of
a post-coordination before repeating. We generate 100 trials for
each of models. In total, we have 2,700 simulation datasets.

4.3 Real datasets
4.3.1 Baboon trajectories. High-resolution GPS collars track

26 individuals of a troop of olive baboons (Papio anubis) living
in the wild in Mpala Research Centre, Kenya [9, 31]. �e data
consists of latitude-longitude location pairs for each individual at
one observation per second. We analyze a subset of 16 individuals
whose collars remained functional for a nine day period (419,095
time steps).

4.3.2 Fish schools trajectories. �e movement of a �sh school
of golden shiners (Notemigonus crysoleucas) are recorded by video
in order to study information propagation over the visual �elds of
�sh [32]. Each population contains 70 �sh, with 10 trained, labeled
�sh who are able to lead the school to feeding sites over 24 separate
coordination events. �e task is to correctly identify trained �sh
by initiator ranking.

4.3.3 Stock closing-price time series. We collected daily closing
price data for stocks listed in NASDAQ, using Yahoo! Finance.2
�ese time series are from January 2000 to January 2016 (4169
time-steps). We remove symbols with a large amount of missing
data, leaving a total of 1443 symbols in our dataset. Our analysis
focuses on discovering large, known events and crises in an un-
supervised way, and to explore initiators and sectors involved in
these coordination events.

4.4 Evaluation
For synthetic datasets, we use three evaluation approaches:
• Global leadership: For each method, we extract network and/or

rank statistics over the entire time series, and report only a single
aggregate initiator ranking. We compare the known ground truth
ranking (used to generate the data) against the ranking of each
method, reporting precision. We measure precision of identifying
the true initiator, on DM, LT, IC, and INIT-1 models. For the HM
model, we compare the exact top-4 ranking against the ground
truth (order ma�ers); �e evaluation is the same for CM and INIT-
4 models, except the exact top-4 ranking constraint is relaxed (i.e.
we compare top-4 sets).
• Local leadership: For evaluation data in this case, we use the

ground truth ranking for each local coordination event, and the
time intervals of each event. We report average precision over
each discovered pre-coordination interval. We evaluate the EM

2h�p://�nance.yahoo.com/

model using this approach. We report only the FLICA result,
since it is the only method capable of producing local ranking.

• Initiator leadership: For each coordination event, we mea-
sure the initiator of coordination event before coordination oc-
curs (e.g. in the pre-coordination interval). �is individual
may not be highly ranked a�er coordination (see: Figure 2).
We report the precision of global leadership considering only
the pre-coordination intervals. Since only FLICA identi�es pre-
coordination intervals, we compare against other methods’ global
leadership. �is evaluation demonstrates that global leadership
is distinct from coordination initiation. We evaluate DM-S and
HM-S models using this approach.

4.5 Compared leadership methods

Table 1: Leadership inference methods

Method Input Time complexity
FLICA Time series O (n2 × t × ω )

FLOCK [2] Trajectory O (n2 × t )
LPD [21] Time series O (n2 × t × ω3)
IM [19] Network O (n2 × t )

We demonstrate the performance of our framework by com-
paring with previous work on in�uence and leadership [2, 19, 21].
�ese methods can infer only global initiator ranking, while our
proposed framework (FLICA) can detect individual coordination
events, handles switching initiator, and performs leadership model
classi�cation. �erefore, we use the global leadership identi�cation
task to compare FLICA’s performance with the prior works. We
report the best results under varying parameters for competing
models. �e time complexity of each method is shown in Table 1.

First, the FLOCK model [2] identi�es leaders who in�uence the
norm direction vector of the group. Second, LPD [21] creates an
aggregate ‘following’ network from time-lag features. A node is
scored by breadth-�rst traversal on reversed ‘following’ edges. Vis-
ited neighbors’ contribution is inverse-proportional to the geodesic
distance. For the purposes of our simulation, we use sliding Eu-
clidean distance alignment (e.g. analogous to cross-correlation)
because LPD does not scale to the size of our simulations under
DTW (see: Table 1). Finally, for in�uence maximization (IM), we
use the independent cascade model for the 1-seed selection prob-
lem [19], on the network derived from [2]. �e network describes
the probability of any individual A sharing the same direction as B,
and in the front of B.

To make leadership comparison possible, we report the global
leadership rank ordered list for each method as follows. First, we
create rank order lists for FLICA under PageRank. �e FLOCK
model, however, does not have the explicit ranking score, so we
rank individuals based on decreasing time duration of leadership.
�ird, LPD assigns individuals with higher scores a higher rank.
Finally, since IM uses the probabilistic network of in�uence, we
construct the realization of this in�uence network. A node in-
�uences any node to which it has a directed path in the realized
network. We rank individuals based on the expectation of nodes
in�uenced by that node over 1000 realized networks.
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Table 2: Precision of leadership identi�cation on simulation
models. (* indicates the std ≥ 0.1).

Models/Methods FLICA FLOCK IM LPD
DM 1 1 1 1

HM (Top-4) 1 0.25 1 1
LT 0.99 0.98* 0.99* 0.93*
IC 1 1 1 0.99

CM (Top-4) 1 1 1 0.99
INIT-1 1 1 1 1

INIT-4 (Top-4) 0.74* 0.35* 0.51* 0.21*
DM-S 1 0 0.02* 0.25*

HM-S (Top-4) 1 0 0.5 0.51
EM 0.92 - - -

Random 0.01 0 0.01 0.17*

5 RESULTS
5.1 Identifying leaders
In each simulation, we have the label of the true initiator(s). For
each of the simulation trials, our method identi�es the ‘initiator’
and ‘rank ordered lists’ (see Section 4.4). We set a window sizeω by
the TWIN heuristic [34] on the network density, window shi� size
δ = 0.1ω, and the λ threshold at the mean of the network density
time series d(t ).

Table 2 reports precision on PageRank rank ordered lists over all
synthetic model simulations. We compare against previous work,
FLOCK [2], IM [19], and LPD [21] models which produce a single
ranking over the entire trial.

�e white rows in Table 2 report precision of leadership identi-
�cation for a �xed initiator across all coordination events (global
leadership). Gray rows report precision of initiator leadership
where leaders change between pre-coordination and coordination
intervals in the event (DM-S, HM-S), or precision of local lead-
ership where the initiator changes per coordination event (EM).
�e rows labeled ‘Top-4’ report precision in identifying any of
the multiple unordered initiators (CM, INIT-4) or precision for the
correct hierarchical order (HM, HM-S).

On the white rows, FLICA is robust across all simulations, while
FLOCK, IM, and LPD perform well other than on INIT-4 simulations
(e.g. with multiple initiators). However, in gray rows (“initiator
switching”) previous methods fail almost completely since they
are unable to detect leadership prior to coordination. When the
coordination state is more prevalent than the pre-coordination
decision-point, ranking will favor an individual who happens to
lead the dynamics in the coordination state (but may not have
initiated the state).

�e row reporting EM results is a special case of precision. Be-
cause we know each coordination event has a unique initiator,
ranking individuals across all coordination events will fail. Instead,
we report precision in identifying the initiator of each coordination
event. Since previous work generates only aggregate rankings,
precision for these methods are not reported.

5.2 Case study: trained initiators in �sh
schools

We identify the top-k global initiators of the �sh school trajectory
dataset (see: Section 4.3.2), where we have the labels of ‘trained’
individuals expected to lead the school to feeding sites. Table 3
reports precision of identifying trained �sh as initiators over 24
trials. �e Initiator column is precision of predicting a trained
�sh as a global initiator. �e Top-4 rank column is precision of
identifying trained �sh as the top-4 ranking individuals. Similar
to the simulation models, FLICA performs best overall, again sug-
gesting that dynamic following network representation captures
‘following’ be�er than other features.

Table 3: Initiator identi�cation precision in �sh (* indicates
the std ≥ 0.1).

Ranking Initiator Top-4 rank
FLICA 0.83* 0.61*

FLOCK [2] 0.0 0.0
IM [19] 0.0 0.02

LPD [21] 0.17* 0.18*

5.3 Case study: �nding “initiators” of stock
market events

We apply our leadership framework to stock market closing price
data of the NASDAQ index. An ‘initiator’ in this context measures
the extent that a stock increases or decreases in value before a
large group of other stocks (e.g. a coordinated group). We apply
the framework without any special consideration to the domain,
only to qualitatively validate that we can discover known, large
events.

Figure 3 shows the network density of the inferred ‘following’
network over time, where we discover coordination events with λ
threshold at the 75th percentile of the network density time series.
Pre-coordination and coordination intervals are shown in red and
green, respectively. We �nd signi�cant economic events such as
the 2000 tech collapse, and 9/11. More interestingly, we discover
known events which are re�ected in the network density signal
but not the NASDAQ index. For example, we discover a technical
econometric event, where the “TED Spread” (a surrogate of national
credit risk) begins �uctuating in July 2007, and a small market
failure in August 2011. Matching our intuition, the top-ranked
companies in the coordination event associated with the year 2000
collapse are primarily in IT and semiconductors, including eBay
and SanDisk in the top 10.

5.4 Leadership model classi�cation
Recall, that we proposed several initiator rankings and ranking cor-
relations (Section 3.6). Here, we do leadership model classi�cation
on each simulation trial using the proposed features derived from
the rank correlations: corrp , corrv , corrp,pr , corrv,pr and suppr .
A classi�er takes these features and produces a leadership model
label, one per trial of the simulation model in the evaluation hold-
out. We use 10-fold cross validation on Random Forests [17] over
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Figure 3: (Top) NASDAQ ‘following’ network density and
(Bottom) NASDAQ index value. Pre-coordination and co-
ordination intervals are shown in red and green, respec-
tively. �e framework detects many known events in �nan-
cial data (labeled above). Many of these events are not re-
�ected in the NASDAQ index.

the 2700 total trials and report mean precision and recall across
folds. Table 4 reports the classi�cation results for each simulation
model. We combine some models into a shared label because they
share similar characteristics when we project them into our feature
spaces. For example, DM, and DM-S models always have high
corrv but low corrp .

Figure 4 visualizes sub-spaces of the full feature-space. Figure
4 (Top) shows the maximum support (suppr ) over all individuals
for this trial vs. the corrv (the rank correlation between global and
local VCH ranking) and corrp . �e suppr axis (x-axis) describes
how ‘dictatorial’ (e.g. consistent) the leadership is across coordi-
nation events. DM therefore has high support, while EM (distinct
leaders per coordination event) has low suppr. �e corrv and corrp
axes describe consistency between local and global convex hull
rankings. HM has high velocity ranking because leaders accelerate
in a consistent sequence, yielding consistent individuals movement
outside of the VCH in the previous time step. �e random model
produces high corrp because relative positions within the group
are somewhat consistent. �erefore, a consistent set of individuals
expand the PCH from the previous time step.

Figure 4 (Bo�om-Right) reports the mean rank correlation be-
tween PageRank rank ordering, against PCH and VCH ranking
in each coordination event. At the origin (0, 0), ranking from the
inferred ‘following’ network is uncorrelated with time series fea-
ture rankings in position or velocity. Following our intuition, the
Random simulation has the lowest cross-domain feature correla-
tion, while DM and HM have highest correlation between these
domains. As the simplest simulations, DM and HM both dictate
that leaders will have regular position (e.g. the front of the group),
or velocity (accelerating in sequence before others). Simulations

such as CM, LT, IC have indirect relationships between relative
position and velocity vs. the following network ranking.

5.4.1 Baboon leadership model characterization. A key aspect
of our simulation modeling is that we can characterize real datasets
according to how they map into these feature-spaces, compared to
synthetic models. We compute each rank correlations over high-
con�dence baboon events, labeled “Baboon” in Figure 4, thresh-
olded at the 99th percentile of density. We observe that within
di�erent sub-spaces, the baboon ranking is similar to Random or
Linear �reshold, and has low maximum support for global vs. local
rank correlation features (e.g. corrp ). We see this rank correlation
between both cross-domain axes (Figure 4 (Bo�om-Right)). �is
suggests that in aggregate, baboon leadership is heterogeneous
and context-driven, though overall closer to the Linear �reshold
in�uence model (as biologically expected). �is analysis provides
a strategy for hypothesis testing and generation on contrasting
time-scales and sub-spaces.

Table 4: Random forest classi�cation of synthetic leader-
ship models using proposed features

Model Precision Recall F score
DM, DM-S 0.86 0.80 0.81
HM, HM-S 0.69 0.98 0.80

LT, IC, INIT-k 0.99 0.97 0.98
CM 0.75 0.94 0.80
EM 1 0.54 0.64

Random 0.98 0.95 0.97

6 CONCLUSIONS
We narrow the gap between the biosociological view of leadership
in group decision-making and the computational approaches to
leadership inference. �e work presented in this paper formalizes a
new computational problem, namely Coordination Initiator
Inference Problem, and proposes the concrete, simple yet power-
ful, unsupervised general framework as a solution. �e framework
is capable of (1) identifying events of coordinated group behavior,
(2) identifying leaders as initiators of these events, and (3) classify-
ing the type of leadership process at play. We validate the accuracy
of our framework in performing all three of these tasks using 2,700
simulated datasets. Since there are no methods for local leadership
inference and leadership model classi�cation, we compared our
framework with the state-of-art methods for global leadership iden-
ti�cation. Our method performance is consistently competitive and
its abilities go beyond other approaches in all datasets. We further
show that the framework can provide insights on real-world data,
including data on collective animal movement and the economy.
�e methodology presented here is general and applicable to a
wide variety of domains where coordination across many individ-
uals or entities is observed. Moreover, our framework is highly
�exible, and can easily be extended to incorporate other models of
leadership or other features used in model classi�cation, depending
on the details of the system being analyzed. For reproducibility,
we provide our code and simulation datasets at [1].
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Figure 4: Comparison of feature spaces of leadership model classi�cations on simulations and real data
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