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ABSTRACT 

The singular spectrum analysis (SSA) method of time series analysis applies nonparametric techniques to 
decompose time series into principal components. SSA is particularly valuable for long time series, in which patterns 
(such as trends and cycles) are difficult to visualize and analyze. An important step in SSA is determining the spectral 
groupings; this step can be automated by analyzing the w-correlations (weighted correlations) of the spectral 

components. To illustrate, monthly data on temperatures in the United States for about the last 100 years are 
analyzed to discover significant patterns. 

INTRODUCTION 

Time series data often contain trends, cycles, anomalies, and other components. For long time series, these patterns 
are often difficult to visualize and discover. Singular spectrum analysis (SSA) applies nonparametric techniques that 
adapt the commonly used principal component analysis (PCA) for decomposing time series data. The principal 
components can help you discover and understand the various patterns that the time series contains. After you 
understand each of these component series, you can model and forecast them separately; then you can aggregate 
the component series forecasts in order to forecast the original series under investigation. SSA requires grouping of 
the eigenspectrum. In the past, this grouping was performed manually. Based on w-correlation analysis, the spectral 
grouping can be performed automatically.  

BACKGROUND 

This section provides a brief theoretical background on singular spectrum analysis. It is intended to provide the 
analyst with motivation, orientation, and references. An introductory discussion of singular spectrum analysis can be 
found in Golyandina, Nekrutkin, and Zhigljavsky (2001) and in Elsner and Tsonis (1996). This section extends the 
discussion found in Leonard, Elsheimer, and Kessler (2010). 

Traditional Singular Spectrum Analysis 

Given a time series 𝑦𝑡 for 𝑡 = 1, … , 𝑇 and a window length 2 ≤ 𝐿 < 𝑇/2, singular spectrum analysis decomposes the 

time series into spectral groupings by using the following steps: 

1. Embedding step: Using the time series, form a 𝐾 × 𝐿 trajectory matrix  𝑋 = {𝑥𝑘,𝑙}
𝑘=1,𝑙=1

𝐾,𝐿
 such that 𝑥𝑘,𝑙 =

𝑦(𝑘−𝑙+1) for 𝑘 = 1, … , 𝐾 and 𝑙 = 1, … , 𝐿, where 𝐾 = (𝑇 − 𝐿 + 1). By definition, 𝐿 ≤ 𝐾 < 𝑇 because 2 ≤ 𝐿 <

𝑇/2. 

 
2. Decomposition step: Apply singular value decomposition to the trajectory matrix 𝑋 = 𝑈𝑄𝑉, where 𝑈 

represents the (𝐾 × 𝐿) matrix that contains the left-hand-side (LHS) eigenvectors, 𝑄 represents the diagonal 

(𝐿 × 𝐿) matrix that contains the singular values, and 𝑉 represents the (𝐿 × 𝐿) matrix that contains the right-

hand-side (RHS) eigenvectors.  
 

Therefore, 𝑋 = ∑ 𝑋(𝑙)𝐿
𝑙=1 = ∑ 𝑢𝑙𝑞𝑙𝑣𝑙

′𝐿
𝑙=1 , where 𝑋(𝑙) represents the (𝐾 × 𝐿) principal component matrix, 𝑢𝑙 

represents the (𝐾 × 1) left-hand-side (LHS) eigenvector, 𝑞𝑙 represents the singular value, and 𝑣𝑙 represents 

the (𝐿 × 1) right-hand-side (RHS) eigenvector that is associated with the lth window index. 
 

3. Grouping step: For each group index, 𝑚 = 1, … , 𝑀, define a group of window indices 𝐼𝑚 ⊂ {1, … , 𝐿}. Let  

𝑋𝐼𝑚
= ∑ 𝑋(𝑙) = ∑ 𝑢𝑙𝑞𝑙𝑣𝑙

′
𝑖∈𝐼𝑚𝑙∈𝐼𝑚

 represent the grouped trajectory matrix for group 𝐼𝑚. 

 

Note that if groupings represent a spectral partition, ⋃ 𝐼𝑚
𝑀
𝑚=1 =  {1, … , 𝐿}, and 𝐼𝑚 ∩ 𝐼𝑛 = ∅ for all 𝑚 ≠ 𝑛, then 

according to the singular value decomposition theory, 𝑋 = ∑ 𝑋𝐼𝑚

𝑀
𝑚=1 . 

 
 
 
 

4. Averaging step: For each group index, 𝑚 = 1, … , 𝑀, compute the diagonal average of 
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 𝑋𝐼𝑚
= {𝑥𝑘,𝑙

(𝑚)
}

𝑘=1,𝑙=1

𝐾,𝐿
, 𝑥̃𝑡

(𝑚)
=

1

𝑛𝑡

∑ 𝑥(𝑡−𝑙+1),𝑙
(𝑚)𝑒𝑡

𝑙=𝑠𝑡
 

where  𝑠𝑡 = 1, 𝑒𝑡 = 𝑡, 𝑛𝑡 = 𝑡    for (1 ≤ 𝑡 < 𝐿)  
 𝑠𝑡 = 1, 𝑒𝑡 = 𝐿, 𝑛𝑡 = 𝐿    for (𝐿 ≤ 𝑡 ≤ (𝑇 − 𝐿 + 1)  
 𝑠𝑡 = (𝑇 − 𝑡 + 1), 𝑒𝑡 = 𝐿, 𝑛𝑡 = (𝑇 − 𝑡 + 1)  for ((𝑇 − 𝐿 + 1) < 𝑡 ≤ 𝑇) 

 

Note that if groupings represent a spectral partition, ⋃ 𝐼𝑚
𝑀
𝑚=1 =  {1, … , 𝐿}, and 𝐼𝑚 ∩ 𝐼𝑛 = ∅ for all 𝑚 ≠ 𝑛, then  

𝑦𝑡 = ∑ 𝑥̃𝑡
(𝑚)𝑀

𝑚=1  by definition. Hence, singular spectrum analysis additively decomposes the original time 

series, 𝑦𝑡, into 𝑚 component series: 𝑥̃𝑡
(𝑚)

 for 𝑚 = 1, … , 𝑀. 
 

5. Forecasting step (optional): If the groupings represent a spectral partition, then each component series, 

𝑥̃𝑡
(𝑚)

  for 𝑚 = 1, … , 𝑀, can be modeled and forecasted independently using an appropriate time series model 

(ARIMAX, unobserved component model, exponential smoothing model, and others), possibly using 
different time series models that include different input series (causal factors) and calendar events 
(interventions). 
 

Let  𝑥̂𝑡
(𝑚)

 for 𝑚 = 1, … , 𝑀 represent the component series forecasts that are derived from the mth 

independent time series model. Then the forecast for the original time series, 𝑦̂𝑡, can be derived by simply 

aggregating the component series forecasts: 𝑦̂𝑡 = ∑ 𝑥̂𝑡
(𝑚)𝑀

𝑚=1 .

  
The SSA forecasting step represents a clever forecast model combination technique. 

Automatic Spectral Grouping 

An important step in SSA is specifying the groups, 𝐼𝑚 ⊂ {1, … , 𝐿} for 𝑚 = 1, … , 𝑀. In order to automate the SSA  

grouping step, the w-correlations are computed to form an (𝐿 × 𝐿) w-correlations matrix, assuming the maximal 
number of groups:  𝑀 = 𝐿. 

 𝑃(𝑤) = {𝜌𝑖,𝑗
(𝑤)

}
𝑖=1,𝑗=1

𝐿,𝐿
 

where 𝜌𝑖,𝑗
(𝑤)

=
(𝑥𝑡

(𝑖)
,𝑥𝑡

(𝑗)
)

𝑤

‖𝑥̃𝑡
(𝑖)

,𝑥𝑡
(𝑖)

‖
𝑤

‖𝑥𝑡
(𝑗)

,𝑥𝑡
(𝑗)

‖
𝑤

, (𝑥̃𝑡
(𝑖)

, 𝑥̃𝑡
(𝑗)

)
𝑤

=  ∑ 𝑤𝑡𝑥̃𝑡
(𝑖)

, 𝑥̃𝑡
(𝑗)𝑇

𝑡=1 , and 𝑤𝑡 = 𝑚𝑖𝑛(𝑡, 𝐿, 𝑇 − 1) 

The following steps are performed in SSA autogrouping: 

1. Initially assume the maximal number of groups: 𝑀 = 𝐿. 

2. Diagonally average the groups as described previously: 𝑥̃𝑡
(𝑚)

  for 𝑚 = 1, … , 𝐿. 

3. Compute the w-correlations between groups: 𝜌𝑖,𝑗
(𝑤)

. 

4. Choose the groups based on the w-correlations for which the absolute values are near 1. Or more formally, 

𝐼𝑚 ⊂ {1, … , 𝐿}  such that |𝜌𝑖,𝑗
(𝑤)

| ≈ 1 whenever 𝑖, 𝑗 ∈ 𝐼𝑚 

After the groups have been chosen based on the w-correlation analysis, group according to step 3, average 
diagonally according to step 4, and optionally forecast according to step 5. 

MANUAL SPECTRAL GROUPING EXAMPLE 

To illustrate the use of SSA, monthly data on US temperatures for about the last 100 years are analyzed to find 
significant patterns. The analysis of this example illustrates how spectral grouping is manually performed. This 
example is found in Leonard, Elsheimer, and Kessler (2010) and is repeated here for convenience. 

BASIC TIME SERIES ANALYSIS 

The monthly temperature anomaly (in degrees Celsius) for the United States over the last 128 years, which was 
provided by the National Oceanic Atmospheric Administration (NOAA), was analyzed. The temperature anomaly is 
seasonally adjusted by using the reference decade of the 1960s.  

Figure 1 illustrates the SERIES plot. The X axis represents the time ID (DATE), and the Y axis represents the 
temperature anomaly (TEMPERATURE). As you can see from this plot, it is difficult to see any patterns in the time 
series because of its length and variation.  
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Figure 1. Monthly Series Plot of the Temperature Anomaly 
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Figure 2 illustrates the year-over-year monthly cycles plot (CYCLES). The X axis represents the monthly seasonal 
index (January=1, …, December=12), and the Y axis represents the temperature anomaly (TEMPERATURE). Each 
line represents one year (128 seasonal cycles). As you can see from this plot, the series has no discernible monthly 
pattern—as expected, because the time series is seasonally adjusted.  

 

 

Figure 2. Seasonal Cycles Plot of the Temperature Anomaly 

SINGULAR SPECTRUM ANALYSIS 

Next, singular spectrum analysis is applied using a threshold value for the eigenspectrum. A window length of 120 
(10 years), and a threshold value of 80% was used.  
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Figure 3 illustrates the eigenspectrum plot. The upper graph illustrates the eigenspectrum (log-scale), and the lower 
graph illustrates the cumulative percentage of the eigenspectrum on the Y axis. The common X axis represents the 
window lags. As you can see from the upper graph, the eigenspectrum decreases rapidly after the seventh lag. Close 
inspection reveals four “steps” of equal value in the eigenspectrum plot: (1)(2)(3 4)(5 6 7). 

 

 

 

Figure 3. Eigenspectrum of the Temperature Anomaly 

Next, singular spectrum analysis is applied using grouping of the eigenspectrum. The series was decomposed into 
four spectral groups. The first group contains the first lag; the second group contains the second lag; the third group 
contains the third and fourth lags; and the fourth group contains the fifth, sixth, and seventh lags.  
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Figure 4 illustrates the first group. In the upper graph, the jagged blue line represents the original series, and the 
smooth blue line represents the first group. In the lower graph, the blue line represents the first group. As you can see 
from the plot, the first group represents the dominant trend in the temperature anomaly series. From these graphs, it 
appears that temperatures have increased about one degree over about the last 100 years. 

 

Figure 4. First Spectral Group of the Temperature Anomaly 
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Figure 5 illustrates the second group. As you can see from these graphs, the second group represents the dominant 
long-term cycle in the temperature anomaly series.  

 

Figure 5. Second Spectral Group of the Temperature Anomaly 
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Figure 6 illustrates the spectral density plot for the second group. From this plot, there appears to be an 

approximately 22-year cycle (SEASONALITY=264), possibly related to the Hale solar cycle. 

 

Figure 6. Spectral Density of the Second Spectral Group  
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Figure 7 illustrates the third group. As you can see from these graphs, the third group represents the dominant short-
term cycle in the temperature anomaly series. It appears that the variation is small for the reference decade of the 
1960s. 

 

Figure 7. Third Spectral Group of the Temperature Anomaly 
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Figure 8 illustrates the spectral density plot for the third group. From this plot, there appears to be a monthly cycle 
(SEASONALITY=12). Although the time series was adjusted for monthly seasonality, there still appears to be a small 
remnant.  

 

Figure 8. Spectral Density of the Third Spectral Group 
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Figure 9 illustrates the fourth group. As you can see from these graphs, the fourth group represents the dominant 
medium-term cycle in the temperature anomaly series.  

 

 

Figure 9. Fourth Spectral Group of the Temperature Anomaly 

  



12 

Figure 10 illustrates the spectral density plot for the fourth group. From this plot, there appears to be an 
approximately five-year cycle (SEASONALITY=60), possibly related to the El Niño and La Niña cycle. 

 

 

Figure 10. Spectral Density of the Fourth Spectral Group 
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As you can see from the preceding analysis, this long series is effectively decomposed into spectral groups. Figure 
11 illustrates all four spectral groupings. No model assumptions are made other than the window and spectral 
groupings. This analysis demonstrates the value of singular spectrum analysis in finding patterns (especially cyclical 
patterns) in long series. 

 

 

Figure 11. SSA Results for the Temperature Anomaly 

Figure 12 illustrates the summation of all four spectral groupings in addition to the original series. This plot 
demonstrates the spectral components of the dominant singular values. 
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Figure 12. SSA Summation of Groupings for the Temperature Anomaly 

The preceding analysis decomposed the time series into additive components. You can decompose the time series 
into multiplicative components by taking the log transform of the (positive-valued) time series. 

AUTOMATIC SPECTRAL GROUPING EXAMPLE 

The generated results of the automated grouping using 4 groups, which are shown in Figure 12, are identical to those 
in the manual spectral grouping example. An additional heat map is generated to illustrate the w-correlation analysis. 

The heat map is based on the correlation between the window indices. Because a windows length of 120 was used, 
the analysis is confined to 120 window indices. The reddish boxes indicate spectral window indices that have high 
correlation. Because the GROUP=AUTO(4) option was specified, the first four spectral groupings are used in the 
remaining analysis.  
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Figure 13. SSA w-Correlations Analysis 

CONCLUSION 

Singular spectrum analysis (SSA) is a very powerful tool for detecting patterns in long time series with few model 
assumptions. SSA effectively decomposes time series into spectral groupings. These spectral groupings can be 
individually analyzed using time series analysis techniques such as forecasting and state-space component analysis. 
This paper uses temperature records to illustrate how to perform automatic SSA grouping. 

Other cyclical time series can use this technique—for example, in load forecasting (electric, gas, and water 
consumption), service centers (manpower, call centers, and customer support), and telecommunications (phone 
service, data centers, and web servers). Geographic analysis shows how SSA can be used to determine localized 
trends for resource allocation—for example, in new utility construction, new service locations, new telecommunication 
infrastructure, and others. 
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