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ABSTRACT
We consider the problem of querying a string (or, a database) of

length N bits to determine all the locations where a substring

(query) of length M appears either exactly or is within a Ham-

ming distance of K from the query. We assume that sketches of

the original signal can be computed o� line and stored. Using a

sparse Fourier transform computation based approach, we show

that all such matches can be determined with high probability in

sub-linear time. Speci�cally, if the query length M = O(N µ ) and

the number of matches L = O(N λ), we show that for λ < 1 − µ
all the matching positions can be determined with a probability

that approaches 1 as N → ∞ for K ≤ 1

6
M . More importantly our

scheme has a worst-case computational complexity that is only

O
(
max{N 1−µ

log
2 N ,N µ+λ

logN }
)
, which means we can recover

all the matching positions in sub-linear time for λ < 1 − µ. This is a

substantial improvement over the best known non-sketching based

algorithm with computational complexity of O
(
N 1−0.359µ )

for re-

covering one matching position by Andoni et al. [2]. Further, the

number of Fourier transform coe�cients that need to be computed,

stored and accessed, i.e., the sketching complexity of this algorithm

is only O
(
N 1−µ

logN
)
. Several extensions of the main theme are

also discussed.
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1 INTRODUCTION AND PROBLEM
STATEMENT

We consider the substring/pattern matching problem, which has

been studied extensively in theoretical computer science. In this

problem, a signal ®x := (x[0],x[1], . . . ,x[N − 1]) of length N sym-

bols representing a string, library, or database is available. The

objective is to answer queries regarding whether a given string

®y := (y[0],y[1], . . . ,y[M − 1]) of length M is a substring of ®x. We

are especially interested in the case where a sketch of ®x can be com-

puted o�ine and stored, and where the one-time computational

complexity of creating the sketch can be amortized over repeated

queries or ignored. Moreover, we focus on the random setting in

which the x[i]’s form a sequence of independent and identically

distributed (i.i.d.) random variables, each taking values in A ⊂ R.
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We begin our analysis by restricting our attention to the binary case

where A := {±1}.1 Within this context, we consider the following

two settings:

Exact Pattern Matching: In the exact pattern matching prob-

lem, a substring of length M of ®x, namely ®y := ®x[τ : τ +M − 1], is

obtained by taking M consecutive symbols from ®x and is presented

as a query. This pattern may appear within ®x in up to L di�erent

locations τ1,τ2, . . . ,τL and the task is to determine all the locations

τi ,∀i ∈ [1 : L]. We consider the probabilistic version where our

objective is to recover the matching locations with a probability

that approaches 1 as M,N →∞.

Approximate PatternMatching: In approximate pattern match-

ing, ®y is a noisy version of a substring, i.e., ®y = ®x[τ : τ + L − 1] � ®b,

where
®
b is a noise sequence with b[i] ∈ {±1} such that dH (®y, ®x[τ :

τ +M − 1]) ≤ K . Function dH denotes the Hamming distance, and

� represents component-wise multiplication. The objective is to

determine all locations τi such that dH (®y, ®x[τi : τi +M − 1]) ≤ K
with a probability that approaches 1 as K ,M and N →∞.

We evaluate our proposed algorithm according to two metrics

- (i) the space required to store the sketch of ®x, which we refer to

as sketching complexity, and (ii) the computational complexity in

answering the query.

These problems are relevant to many applications including

text matching, audio/image matching, DNA matching in genomics,

metabolomics, radio astronomy, searching for signatures of events

within large databases [13], etc. The proposed techniques are par-

ticularly relevant now due to the interest in applications involving

huge volumes of data. Our proposed approach is most useful in the

following situations. (i) The string ®x is available before querying

and one time computations such as computing a sketch of ®x can

be performed o�ine and stored, and the complexity of computing

the sketch of ®x can be ignored. Then, when queries in the form of

®y appear, one would like to decrease the computational complex-

ity in searching for the string ®y. (ii) The string ®x is not centrally

available, but parts of the string are sensed by di�erent data collect-

ing nodes distributively and communicated to a central server. A

search query is presented to the server; and this server must decide

whether the string appears in the data sensed by one or more of

the distributed nodes and, if present, it must also identify when the

queried string appeared. In this latter case, we wish to minimize the

amount of data communicated by the nodes to the server and the

computational complexity in searching for the string. The proposed

formulation is most useful when the query ®y is not a pattern that

1
Extensions to other alphabets A ⊂ R are straightforward. Extension to the non-i.i.d.

case is also possible.
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can be predicted and, therefore, creating a lookup table to quickly

identify commonly-occurring patterns will not be e�ective.

A naive approach to searching for substring ®y in ®x is to �rst

compute the cross-correlation between ®x and ®y, which we denoted

by ®r = [r [0], r [1], . . . , r [N − 1]] with

r [m] = (®x ∗ ®y)[m] ,
M∑
i=1

x[m + i − 1]y[i], (1)

and, subsequently, choosing the indexm that maximizes r [m]. This

strategy uses the N samples of ®x and has a super-linear compu-

tational complexity of MN = O(N 1+µ ). A computationally more

e�cient approach uses the fact that ®r can be computed by taking the

inverse Fourier transform of the product of the Fourier transforms

of ®x and ®y∗[−n], where ®y∗[−n] is the conjugate of the time reversed

version of ®y. Such an approach still uses all the N samples of ®x, but

reduces the computational complexity to O(N logN ). Note that

even though the Fourier transform of ®x can be precomputed, the

N -point Fourier transform of ®y still needs to be computed online

resulting in the O(N logN ) computational complexity.

Both the exact pattern matching problem and the approximate

pattern matching problem have been extensively studied in com-

puter science. Three recent articles [2], [1] and [11] provide a brief

summary of existing contributions. For the exact matching problem,

the Rabin-Karp algorithm solves a more general problem of �nding

the occurrence of a set of query strings. However, the algorithm

has a computational complexity that is at least linear in N . Boyer

and Moore presented an algorithm in [3] for �nding the �rst oc-

currence of the match (only τ1) that has an expected complexity

of O(N /M logN ) = O(N 1−µ
logN ), whereas the worst case com-

plexity (depending on τ1’s) can be O(N logN ). For large M , the

algorithm indeed has an average complexity that is sub-linear in

N . More recently, it has been shown that techniques based on the

Burrows-Wheeler transform can be used to solve the exact matching

problem with sub-linear time complexity [5] using a storage space

ofO(N ) bits. This problem is well studied under the read alignment

setting by the Bioinformatics community [9, 10]. For small |A|, it

has the best known complexity; however, the complexity increases

with |A|. Further, extensions to approximate matching setting [14]

has a complexity that increases exponentially in K and, hence, ap-

pear to be infeasible forK = O(M). The Boyer and Moore algorithm

has been generalized to the approximate pattern matching problem

in [4] with an average case complexity of O(NK/M logN ), which

provides a sub-linear time algorithm only when K � M . In [2],

Andoni, Hassanieh, Indyk and Katabi have given the �rst sub-linear

time algorithm with a complexity of O(N /M0.359) for K = O(M).

2 OUR MAIN RESULTS AND RELATION TO
PRIORWORK

Assume that a sketch of ®x of size O( NM logN ) can be computed and

stored. Then for the exact pattern matching and approximate pattern
matching (with K = ηM) problems, with the number of matches L

scaling as O(N λ), we show an algorithm that has

• a sketching function for ®y that computes

O( NM logN ) = O
(
N 1−µ

logN
)

samples

• a computational complexity of

O
(
max{N 1−µ

log
2 N ,N µ+λ

logN }
)

• a decoder that recovers all the L matching positions with a

failure probability that approaches zero asymptotically in

N
When L < O

(
N
M

)
(i.e. λ < 1 − µ), which is typically the interesting

case, our algorithm has a sub-linear time and space complexity.

The following two real world examples would help us appreciate

the magnitude of savings in sample and computational complexity

our proposed scheme achieves over a linear scheme.

Example 2.1. Consider a time series application, where an audio

signal is sampled at a moderate sampling rate of 10 KHz and let the

signal ®x correspond to 1 hour of audio and hence, N = 3.6 × 107.

Let the query ®y be a 10 second clip which corresponds to M = 10
4

resulting in a µ = 0.529. Even though the time duration of ®y is only

0.3% of the duration of ®x, the 10KHz sampling results in a fairly

large µ = 0.529. This will result in the complexity of the algorithm

roughly being only proportional to

√
N , which is of the order of√

N improvement over a linear-time algorithm .

Example 2.2. Suppose a database of genomes contains a sequence

®x of length N = 10
12

. Consider a metabolomics application where

we perform partial reads of DNA sequences of organisms in an

environment, and we wish to query whether this organism appears

in the database. With current sequencing technology, we can read

DNA sequences of length M = 1000 to M = 100000 in length (e.g.,

Oxford Nanopore technology can provide long reads) and the reads

are typically in error with a small probability. Naively searching for

the DNA sequence within the database would entail computations

on the order of 10
15 − 10

17
operations. Even linear complexity

would require computations on the order of 10
12

operations. Our

proposed technique provide a nearly 300 times reduction in com-

plexity (based on the simulation results provided in Fig. 4) over

linear-time algorithms for these parameters, thereby bridging the

gap from theoretically possible to practical.

There are important di�erences between our paper and [1–3, 6].

First and foremost, the algorithms used for pattern matching are en-

tirely di�erent. While their algorithms are combinatorial in nature,

our algorithm is algebraic and uses signal processing and coding

theoretic primitives. Secondly, the system model considered in our

paper di�ers from the model in [1–3, 6] in that we allow for prepro-

cessing or creating a sketch of the data ®x. Our algorithm exploits

this fact and results in a computational complexity O(N /M) which

is better than that in [2] for the approximate pattern matching prob-

lem. Finally, we also consider the problem of �nding all matches of

the pattern ®y instead of looking for only one match.

Our paper is inspired by and builds on two recent works by

Hassanieh et al. in [6] and Pawar and Ramchandran [12]. In [6],

Hassanieh et al., considered the correlation function computation

problem for a Global Positioning System (GPS) receiver and ex-

ploited the fact that the cross-correlation vector ®r is a very sparse

signal in the time domain and, hence, the Fourier transform of®r need

not be evaluated at all the N points. In the GPS application, which

was the focus of [6], the query ®y corresponds to the received signal

from the satellites and, hence, the length of the query was at least N .

As a result, the computational complexity is still O(N logN ) (still
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linear in N ) and only the constants were improved in relation to

the approach of computing the entire Fourier transform. In a later

paper by Andoni et al., [2], a sub-linear time algorithm for shift

�nding in GPS is presented; however, this algorithm is completely

combinatorial and eschews algebraic techniques such as FFT-based

techniques.

In [12], Pawar and Ramchandran present an algorithm based

on aliasing and the peeling decoder for computing the Fourier

transform of a signal with noisy observations for the case when

the Fourier transform is known to be sparse. This algorithm has

a complexity of O(N logN ) (near-linear in N ) and they do not

consider the pattern matching problem. Our algorithm follows a

similar approach to that of Pawar and Ramchandran’s algorithm

with one important distinction. We modify their algorithm to ex-

ploit the fact that the peak of the correlation function of interest is

always positive. This modi�cation allows us to compute the Sparse

Inverse Discrete Fourier Transform (SIDFT) with sub-linear time

complexity of O(N 1−α
logN ), 0 < α ≤ 1 as opposed to a near-

linear complexity . One of the main contributions of this paper is

to show that signal processing and coding theoretic primitives, i.e.,

Pawar and Ramchandran’s algorithm with key modi�cations can

be used to solve the pattern matching algorithm in sub-linear time.

3 NOTATIONS
The table below introduces the notations we adopt throughout

this paper. We denote signals and vectors using the standard vec-

Symbol Meaning
N Size of the string or database in symbols

M Length of the query in symbols

L Number of matches

µ Smallest 0 < µ < 1 such that M = O(N µ )
λ Smallest 0 < λ < 1 such that L = ON λ)
K maxτ dH (®x[τ : τ +M − 1], ®y)
η K

M
d Number of stages in the FFAST algorithm

fi ≈ N α
Length of smaller point IDFT at each stage-i

дi = N /fi Sub-sampling factor in Fourier domain for stage-i
B Number of shifts (or branches) in each stage

G = Nγ
Number of blocks (for parallel processing)

Ñ = N 1−γ
Length of one block (for parallel processing)

Table 1: Parameters and various quantities involved in de-
scribing the algorithm

tor notation of arrow over the letter, time domain signals using

lowercase letters and the frequency domain signals using upper-

case letters. For example ®x = (x[0],x[1], . . . ,x[N − 1]) denotes a

time domain signal with ith time component denoted by x[i], and

®X = FN {®x} denotes the N -point Fourier coe�cients of ®x. We de-

note matrices using boldface upper case letters. We denote the set

{0, 1, 2 · · · ,N − 1} by [N ].

4 DESCRIPTION OF THE ALGORITHM
In this section, given the input string ®x and the query string ®y,

we describe our algorithm that �nds the matching positions T :=

{τ1,τ2, · · · τL}with sample and time complexities that are sub-linear

in N . The main idea exploits the fact that the correlation vector ®r is

sparse (upto some noise terms) with dominant peaks at L matching

positions denoted by T and noise components at N − L positions

where the strings do not match.

Consider the correlation signal ®r in the case of exact matching:

r [m] =
{

M, ifm ∈ T
nm , m ∈ [N ] − T

(2)

where nm is the noise component that is induced due to correlation

of two i.i.d. sequence of random variables each taking values from

A := {+1,−1}. The sparse vector ®r can be computed indirectly

using Fourier transform approach as shown below:

®r = F −1N
III

{FN {®x}
I

� FN {®y′}
II

} (3)

where FN {·} and F −1N {·} refer to N -point discrete Fourier trans-

form and its inverse respectively, � is the point-wise multiplication

operation and y′[n] = y∗[−n]. Fig. 1 presents a notional schematic

of our Algorithm. As evident from Eq. (3), our algorithm for com-

puting ®r consists of three stages:

• Computing the sketch ®X = FN {®x} of ®x
• Computing the sketch ®Y ′ = FN {®y′} of ®y
• Computing the IDFT of ®R = ®X � ®Y ′ given ®X and ®Y ′

4.1 Sparse Inverse Discrete Fourier Transform
In this section we present Robust Sparse Inverse Discrete Fourier

Transform(RSIDFT) scheme that exploits sparsity in the cross-

correlation signal ®r and e�ciently recovers its L dominant coe�-

cients. The architecture of RSIDFT is similar to that of the FFAST

scheme proposed in [12], but the decoding algorithm has some

modi�cations to handle the noise model induced in this problem.

We will see in Sec. 4.2 how the sketches ®X and ®Y ′ are computed

e�ciently but for this section we will focus only on the recovery

of the sparse coe�cients in ®r given ®X and ®Y ′.
Consider the RSIDFT framework shown in Fig. 2. Let ®R = ®X � ®Y ′

be the DFT of the cross-correlation signal of ®x and ®y. We begin by

factoring N into d relatively prime factors { f1, f2, . . . , fd }, where

d is a parameter in the algorithm. The design scheme for choosing

fi ’s for various values of µ such that fi divides N and fi = N α +

O(1)∀ i ∈ [d] are given in Sec. 4.1.2. The RSIDFT algorithm consists

of d-stages with each stage corresponding to a sub-sampling factor

of
N
fi

. In each stage, there are B = O(logN ) branches with shifts

from the set {s1, s2, · · · sB }, where s1 = 0 in the �rst branch and the

rest are chosen uniformly at random from [N ].
Given the input ®R, in branch j of ith stage of RSDIFT, referred to

as branch (i, j) for simplicity, RSIDFT sub-samples the signal ®R at

Si, j := {sj , sj + дi , sj + 2дi , · · · sj + (fi − 1)дi }, i ∈ [d], j ∈ [B]
(4)

where дi :=
N
fi

to obtain ®Ri, j := ®R[Si, j ]. The sub-sampling opera-

tion is followed by a fi -point IDFT in branch (i,j) of stage-i to obtain

®ri, j . Notice that ®ri, j is an aliased version of ®r due to the property

that sub-sampling in Fourier domain is equivalent to aliasing in

time domain.
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Figure 1: Schematic of the proposed scheme using sparse Fourier transform computation.
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Figure 2: RSIDFT Framework to compute inverse Fourier
Transform of a signal ®R that is sparse in time domain.

Let ®zi,k ∈ RB , for k ∈ [fi ] + 1, be the kth binned observation

vector of stage-i formed by stacking ®ri, j [k], j ∈ [B], together as a

vector i.e.

®zi,k =
[
ri,1[k], ri,2[k], · · · , ri,B [k]

]T
Note that this gives us a total of fi binned observation vectors in

each stage-i . Using the properties of Fourier transform, we can

write the relationship between the observation vectors ®zi,k at bin

(i,k) and sparse vector to be estimated ®r as:

®zi,k =Wi,k ×
[
r [k], r [k + fi ], · · · , r [k + (дi − 1)fi ]

]T
(5)

where we refer to Wi,k as the sensing matrix at bin (i,k) and is

de�ned as

Wi,k =
[
®wk , ®wk+fi , . . . , ®wk+(дi−1)fi

]
(6)

and ®wk =
[
e
j2πks

1

N , e
j2πks

2

N , · · · , e
j2πksB

N

]T
We represent the relation between the set of observation vectors

{®zi,k , i ∈ [1 : d],k ∈ [fi ]} and ®r using a Tanner graph, an example

of which is shown in Fig. 3. The nodes on the left, which we

refer to as variable nodes, represent the N elements of vector ®r.
Similarly the nodes on the right, which we refer to as bin nodes,
represent the

∑
i≤d fi sub-sensing signals. We will now describe

the decoding algorithm which takes the set of observation vectors

r [0]

r [1]

r [2]

r [3]

r [4]

r [5]

®z1,1 =
[
r1,1[1] = r [0] + r [3]
r1,2[1] = r [0]w0

2
+ r [3]w3

2

]

®z1,2 =
[
r1,1[2] = r [1] + r [4]
r1,2[2] = r [1]w1

2
+ r [4]w4

2

]

®z1,3 =
[
r1,1[3] = r [2] + r [5]
r1,2[3] = r [2]w2

2
+ r [5]w5

2

]

®z2,1 =
[
r2,1[1] = r [0] + r [2] + r [4]
r2,2[1] = r [0]w0

2
+ r [2]w2

2
+ r [4]w4

2

]

®z2,2 =
[
r2,1[2] = r [1] + r [3] + r [5]
r2,2[2] = r [1]w1

2
+ r [3]w3

2
+ r [5]w5

2

]

wk
i :=

(
e j

2πsi
N

)k

Figure 3: Example of a Tanner graph formed in a RSIDFT
framework with system parameters being N = 6, f1 = 2, f2 =
3 (i.e., d = 2) and B = 2. The variable nodes (gray circles)
represent the cross-correlation vector ®r and the bin nodes
(white squares) represent the binned observation vector ®zi,k .
The �gure illustrates the relationship between ®zi,k and ®r.

{®zi,k , i ∈ [1 : d],k ∈ [fi ]}, each of length B, at d fi bins as input

and estimates the L-sparse ®r.

4.1.1 Decoder. Observe from the Tanner graph that the degree

of each variable node is d and that of each bin node at stage i is

дi . A variable node is referred to as non-zero if it corresponds to a

matching position and as zero if it corresponds to a non-matching

position. Note that even though the cross-correlation vector value

corresponding to a non-matching position is not exactly zero but

some negligible noise value we refer to them as zero variable nodes

for simplicity. We refer to a bin node as zero-ton (or Hz ) if the

number of non-zero variable nodes connected to the bin node is

zero. The singleton (Hs ), double-ton (Hd ) and multi-ton (Hm ) bin

nodes are de�ned similarly where the number of non-zero variable

nodes connected are one, two and greater than two, respectively.

The peeling decoder has the following three steps in the decoding

process.
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Bin Classi�cation. In this step a bin node is classi�ed either as a

zero-ton or a singleton or a multi-ton. At bin (i, j) the classi�cation

is done by comparing the �rst observation zi, j [1], which corre-

sponds to zero shift, with a prede�ned threshold. For zi, j [1] = z,

the classi�cation hypothesis at bin (i, j), Ĥi, j , can be written as

follows:

Ĥi, j =


Hz z/M < γ1
Hs γ1 < z/M < γ2
Hd γ2 < z/M < γ3
Hm z/M > γ3

(7)

where (γ1,γ2,γ3) = ( 1−2η
2
,
3−4η
2
,
5−6η
2
). Note that for the case of

exact matching η = K/M = 0.

Note: Notice that in R-FFAST [12] a bin can be classi�ed as a sin-

gleton/ multi-ton only after the singleton decoding step, and hence

results in a linear complexity. Whereas we take advantage of the

positivity in cross-correlation vector to classify a bin just based on

the �rst observation zi, j [1] and perform singleton decoding only

for singleton bins. This key distinction lets us achieve a sub-linear

time complexity.

Singleton decoding. If a bin node (i, j) is classi�ed as a singleton

in the bin classi�cation step, we need to identify the position of the

non-zero variable node connected to it. This is done by correlating

the observation vector ®zi, j with each column of the sensing matrix

Wi, j := [ ®wj , ®wj+fi , . . . , ®wj+(дi−1)fi ] and choosing the index that

maximizes the correlation value.

ˆk = arg max

k ∈{j+l fi }
®z†i, j ®w

k

where † denotes the conjugate transpose. The value of the variable

node connected to the singleton bin is decoded as:

r̂ [ ˆk] = M(1 − η).
Note that for the case of exact matching we know the value to be

exactly equal to M . But in the case of approximate matching, the

actual value of r [k] ∈ {M(1 − 2η), . . . ,M − 1,M} and our estimate

r̂ [ ˆk] = M(1−η) is only approximate. But this su�ces for recovering

the positions of matches i.e., the indices of the sparse coe�cients

in ®r.

Peeling Process. The peeling based decoder we employ consists

of �nding a singleton bin, then identifying the single non-zero

variable node connected to the bin, decoding its value and removing

(peeling o�) it’s contribution from all the bin nodes connected to that

variable node. The main idea behind this decoding scheme is that

(for appropriately chosen parameters), at each iteration, peeling a

singleton node o� will induce at least one more singleton bin and the

process of peeling o� can be repeated iteratively. Although the main

idea is similar for exact matching and the approximate matching

scenarios, there are some subtle di�erences in their implementation.

Exact Matching: In exact matching, we remove the decoded variable

node’s contribution from all the connected bin nodes.

Approximate Matching: In this case, similar to the approach in [8],

we remove the decoded variable node’s contribution only from bins

that are originally a singleton or a double-ton. We do not alter the

bins which are classi�ed to be multi-tons with degree more than

two.

We present the overall recovery algorithm, which comprises

of bin classi�cation, singleton decoding and peeling process, in the

Algorithm.1 pseudo-code. Note that N(k) denote the neighborhood

for variable node k i.e., the set of bins connected to kth
variable

node.

Algorithm 1 Peeling based recovery algorithm

Compute Ĥi, j for i ∈ [d], j ∈ [fi ]. (See Eqn. (7))

while ∃ i, j : Ĥi, j = Hs , do

( ˆk, r̂ [ ˆk]) =Singleton-Decoder(®zi, j )

Assign r̂ [ ˆk] to
ˆkth

variable node

for (i0, j0) ∈ N( ˆk) do
if Exact Matching then
®zi0, j0 ← ®zi0, j0 − r̂ [ ˆk] ®w

ˆk

else
®zi0, j0 ← ®zi0, j0 − r̂ [ ˆk] ®w

ˆk only if Ĥi0, j0 = Hs orHd

Re-do the bin classi�cation for (i0, j0) and compute Ĥi0, j0

Algorithm 2 Singleton-Decoder

Input: ®zi, j
Output: ( ˆk, r̂ [ ˆk])

Estimate singleton index to be
ˆk = arg max

k ∈{j+l fi }
®z†i, j ®w

k

Estimate the value to be:

r̂ [ ˆk] =
{
M Exact Matching case

M − K Approximate Matching case

4.1.2 Choosing fi and α for various µ. For a given value of µ,

we will describe how to choose the parameters d and fi . Find a

factorization for signal length N =
∏d−1

i=0 Pi such that the set of

integers {P0, P1, . . . , Pd−1} are pairwise co-prime and all the Pi are

approximately equal. More precisely, let Pi = F +O(1) ∀i for some

value F. We can add zeros at the end of the vector ®x and increase

the length of the vector until we are able to �nd a factorization that

satis�es this property.

(1) For µ < 0.5: Choose fi = N /Pi .
Exact Matching: Find d ∈ N\{1, 2} such that µ ∈ ( 1d ,

1

d−1 ]
Approximate Matching: If µ ∈ ( 1

8
, 1
2
), choose d = 8. Else

�nd d ≥ 8 such that µ ∈ ( 1d ,
1

d−1 )
(2) For µ > 0.5: Choose fi = Pi

Exact Matching: Find d ∈ N\{1, 2} such that µ ∈ (1 −
1

d−1 , 1 −
1

d ]
Approximate Matching: If µ ∈ ( 1

2
, 1
8
), choose d = 8. Else

�nd d ≥ 8 such that µ ∈ (1 − 1

d−1 , 1 −
1

d )

Thus, for both the exact and approximate matching cases, for any

0 < µ < 1, we choose the down-sampling factors fi to be approxi-

mately equal to N α
where α > 1 − µ.
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4.1.3 Distributed processing framework. Given a database(or

string) of length N , we divide the database into G = Nγ
blocks

each of length Ñ = N /G. Now each block can be processed inde-

pendently (in parallel) using the RSIDFT framework with the new

database length reduced from N to Ñ . This distributed framework

has the following advantages

• Firstly, this enables parallel computing and hence can be

distributed across di�erent workstations.

• Improves the sample and computational complexity by a

constant factor.

• Sketch of the database needs to be computed only for a

smaller block length and hence requires computation of

only a shorter Ñ point FFT.

• Enables localized searches on only a few blocks if we have

prior knowledge about the matching query locations.

• Helps overcome implementation issues with memory and

precision as scale of the problem is reduced.

4.2 Sketches of ®X and ®Y
As we have already seen in Sec. 4.1 the RSIDFT framework requires

the values of ®R(= ®X � ®Y ) only at indices S or in other words we

need ®X and ®Y only at the indices in set S of cardinality dBfi . We

assume that the sketch of ®x, ®X [S] = {X [i], i ∈ S} is pre-computed

and stored in a database.

Computing the sketch of ®y. : For every new query ®y, only { ®Y ′[Si, j ],
i ∈ [d], j ∈ [B]} needs to be computed where the subsets Si, j , de-

�ned in Eq. (4), are

Si, j := { sj + kдi : k ∈ [fi ]}, i ∈ [d], j ∈ [B] (8)

of cardinality fi . Naively, the FFT algorithm can be used to compute

N -pt DFT of ®Y ′ and the required subset of coe�cients can be taken

but this is ine�cient and would be of O(N logN ) complexity. In-

stead, we observe that ®Y ′[Si, j ] is ®Y ′ shifted by sj and sub-sampled

by a factor of дi . Thus for a given (i, j) this corresponds to, in time

domain, a point-wise multiplication by [1,wsj ,w
2

sj , . . . ,w
N−1
sj ] fol-

lowed by folding the signal into дi (= N
fi
) signals each of length fi

and adding them up resulting in a single length-fi signal denoted

by ®y′i, j . Formally the folding operation can be described as follows:

®y′i, j =
дi−1∑
m=0
®y′[mfi : (m+1)fi−1]�[wmfi

sj ,w
mfi+1
sj , . . . ,w

(m+1)fi−1
sj ],

where,wsj = e−
j2π sj
N . Taking fi -point DFT of ®y′i, j produces ®Y ′[Si, j ]

i.e.

®Y ′[Si, j ] = Ffi {®y
′
i, j }

which is what we need in branch (i, j). To obtain all the samples inS
required for the RSDIFT framework, the folding technique followed

by a DFT needs to be carried out for each (i, j), for i ∈ [d], j ∈ [B],
a total of dB times N α

-point DFT.

5 PERFORMANCE ANALYSIS
In this section, we will analyze the overall probability of error in-

volved in �nding the correct matching positions. This can be done

by analyzing the following three error events independently and

then using a union bound to bound the total probability of error.

E1-Bin Classi�cation: Event that a bin is wrongly classi�ed.

E2-Position Identi�cation: Given a bin is correctly identi�ed as a

singleton, event that the position of singleton is identi�ed incor-

rectly.

E3-Peeling Process: Given the classi�cation of all the bins and the

position identi�cation of singletons in each iteration is accurate,

event that the peeling process fails to recover the L signi�cant

correlation coe�cients.

5.1 Bin Classi�cation
Lemma 5.1. The probability of bin classi�cation error at any bin

(i, j) can be upper bounded by

P[E1] ≤ 6e−
N µ+α−1(1−6η)2

16

Proof.

P[E1] = ≤ P[E1 |Ĥi, j = Hz ] + P[E1 |Ĥi, j = Hs ]

+ P[E1 |Ĥi, j = Hd ∪Hm ]

≤ e−
N µ−α (1−2η)2

8 + 2e−
N µ−α (1−4η)2

16

+ 2e−
N µ+α−1(1−6η)2

16 + e−
N µ+α−1(1−6η)2

16

≤ 6e−
N µ+α−1(1−6η)2

16

where the inequalities in the third line are due to Lemmas A.1, A.2,

A.3 and A.4 respectively provided in Appendix A. �

5.2 Position Identi�cation
Lemma 5.2. Given that a bin (i, j) is correctly classi�ed as a single-

ton, the probability of error in identifying the position of the non-zero
variable node can be upper bounded by

P[E2] ≤ exp
{
−
N µ+α−1(1 − 2η)2(c2

1
− 1)

8(c2
1
+ 1)

}
+ exp

{
−N

µ+α−1 (c1(1 − 2η) − 1)2

8(1 + c2
1
)

}

Proof. The detailed proof is provided in Appendix B. �

5.3 Peeling Process

d 2 3 4 5 6 7 8

δ 1.000 0.4073 0.3237 0.2850 0.2616 0.2456 0.2336

dδ 2.000 1.2219 1.2948 1.4250 1.5696 1.7192 1.8688

Table 2: Constants for various error �oor values

To analyze the peeling process alone independently, we refer to a

oracle based peeling decoder which has the accurate classi�cation of

all the bins and can accurately identify the position of the singleton
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given a singleton bin at any iteration. In other words, oracle based

peeling decoder is the peeling part of our decoding scheme but with

the assumption that the bin classi�cation and position identi�cation

are carried out without any error.

Lemma 5.3 (Exact Matching). For the exact matching case,
choose Fd−1 = δN α where δ is chosen as given in Table. 2. Then the
oracle based peeling decoder:

• successfully uncovers all the L matching positions if L =
Ω(N α ) and L ≤ N α , with probability at least 1 −O(1/N

1

d )
• successfully uncovers all the L matching positions, if L =

o(N α ), with probability at least 1 − e−βε21N α /(4l+1)
for some

constants β , ε1 > 0 and l > 0.

Proof. We borrow this result from Pawar and Ramchandran’s

[12]. Although our RSDIFT framework and their robust-FFAST

scheme have three main di�erences:

(i) We are computing smaller IDFT’s to recover a sparse bigger

IDFT whereas in [12] the same is true for DFT instead of IDFT.

(ii) Our problem model is such that the sparse components of the

signal space has only positive amplitude and thus our bin processing

part (bin classi�cation and position identi�cation) is di�erent when

compared to [12].

(iii) The sparsity of the signal L to be recovered is exactly known

in the case of [12] whereas we have no information about L not

even the order with which the quantity scales in N .

Irrespective of these di�erences, the Tanner graph representation

of the framework and the peeling part of the decoder are identical

to that of the robust-FFAST scheme. And thus the limit of the

oracle based peeling decoder for our scheme is identical to that in

the robust-FFAST scheme [12]. With respect to the third di�erence,

in robust-FFAST scheme the authors choose Fd−1 = δk where k
is the sparsity of the signal (which is assumed to be known) and

show the �rst assertion of the lemma. They also showed that upto

a constant fraction (1 − ε) of k-variables node can be recovered

with probability of failure that decays exponentially in N . In our

case, since L = o(N α ), this result translates to recovering all the

L non-zero variable nodes with an exponentially decaying failure

probability. �

In any iteration, given a singleton bin, the peeling process, in

the case of approximate matching, runs the Singleton-Decoder

algorithm on the bin only if it was either originally a singleton

or originally a double-ton with one of the variable nodes being

peeled o� already. This is in contrast to the exact matching case

where the peeling decoder runs the Singleton-Decoder on the bin

irrespective of it’s original degree. Hence we need to analyze the

oracle based peeling decoder for the approximate matching case

separately compared to the exact matching case.

Lemma 5.4 (ApproximateMatching). For the approximatematch-
ing case, choose parameter d ≥ 8 as described in Sec. 4.1.2 and
Fd−1 = 0.7663N α . Then the oracle based peeling decoder:

• successfully uncovers all but a small fraction ε = 10
−3 of

the L matching positions, if L = Ω(N α ) and L ≤ N α with a
failure probability that decays exponentially in N

• successfully uncovers all the L matching positions, if L =
o(N α ), with probability at least 1 − e−βε21N α /(4l+1)

for some
constants β, ε1 > 0 and l > 0.

Proof. As mentioned earlier, the key di�erence in the approxi-

mate matching case is peeling o� variable nodes from only singleton

and double-tons. An identical peeling decoder is used and analyzed

in the problem of group testing [8] by Lee, Pedarsani and Ramchan-

dran which the authors refer to as SAFFRON scheme. In SAFFRON,

the authors claim that for a graph ensemble which has a regular

degree of d on the variable nodes and a Poisson degree distribution

on the bins, this peeling decoder with a left degree of d = 8 and a

total number of bins at least equal to 6.13k recovers at least (1 − ε)
fraction of the k non-zero variable nodes with exponentially de-

caying probability. Note that
6.13
8
≈ 0.7663 is approximately the

number of bins per stage for d = 8. We also leverage the result from

[12] that the Tanner graph representation of the robust-FFAST (or

equivaently RSDIFT framework) has a Poisson degree distribution

on the bins. Combining these two results gives us the required

results. �

Theorem 5.5 (Overall Probability of Error). The RSIDFT
framework succeeds with high probability asymptotically in N if
the number of samples in each branch fi = N α +O(1) satis�es the
condition α > 1 − µ.

Proof. The overall probability of error P[E
total
] can be bounded

using an union bound on the three error events E1, E2 and E3 given

by

P[E
total
] ≤ P[E1] + P[E2] + P[E3]

Using the expressions for error probabilities from Lemmas 5.1, 5.2,

5.3 and 5.4, we can see that all the terms vanish to zero as N →∞
if µ + α − 1 ≥ 0, i.e. α ≥ 1 − µ. �

6 SAMPLE AND COMPUTATIONAL
COMPLEXITY

In this section, we will analyze the sketching complexity which

is the number of samples we access from the sketch of the signal

®x stored in the database and the computational complexity as a

function of the system parameters.

6.1 Sample Complexity
In each branch of the RSDIFT framework we down-sample the N

samples by a factor of
N
fi

to get fi ≈ N α
samples. We repeat this for

a random shift in each branch for B = O(logN ) branches in each

stage thus resulting in a total ofO(N α
logN ) samples per block per

stage. We repeat this for d = 1

1−α such stages resulting in a total of

dN α
logN samples per block. So, the total number of samples is

given by

S = O
(
dN α

logN
)
= O(N 1−µ

logN )

6.2 Computational Complexity
As described in Eq. 3, the computation of ®r involves three steps:

Operation - I : Since we assume that the sketch of database ®x,

FN {®x}, is pre-computed, we do not include this in computational

complexity.
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Operation - II: As described in Sec. 4.2, in each branch (i, j), we

use a folding based technique to compute the sketch of ®y, FN {®y′}
at points in the set Si, j . The folding technique involves two steps:

folding and adding (aliasing) which has a complexity of O(M) com-

putations , and computing fi -point DFTs that takes O(N α
logN α )

computations. So, for a total of dB branches the number of compu-

tations in this step is given by

CI I = dB ( N µ︸︷︷︸
Folding

+ N α
logN α︸        ︷︷        ︸

Shorter FFTs

)

= O(max(N 1−µ
log

2 N ,N µ
logN )).

Note: Folding and adding, for each shift, involves adding N 1−α

vectors of length N α
. We know that the length of the query is

M = N µ
, i.e., the number of non-zero elements in ®y (zero-padded

version of the query) is M and hence we only need to compute M
additions instead of length of the vector N .

Operation - III: Computing F −1N {®x} involves two parts:

RSIFT framework and the decoder. The RSIFT framework involves

computing smaller fi point IDFTs, which takes approximately

O(N α
logN α ) computations in each branch. For a total of dB

branches, we get a complexity ofO(dBN α
logN α ). In the decoding

process, the dominant computation is from position identi�cation.

Each position identi�cation process involves correlating the ob-

servation vector of length B with
N
fi
≈ N 1−α

column vectors,

which amounts to BN 1−α
computations. There will be a maxi-

mum of dL such position identi�cations, which gives a complexity

ofO(dLBN 1−α ). Now, plugging in α = 1 − µ (condition for vanish-

ing probability of error) the total number of computations involved

in this step, CI , is given by

CI I I = dB ( O(N α
logN α )︸            ︷︷            ︸

Shorter IFFTs /block/stage

+ L N 1−α︸  ︷︷  ︸
Correlations

)

= O(max(N 1−µ
log

2 N ,N µ+λ
logN )).

Thus, the total number of computations, C = max{CI I ,CI I I }, is

given by

C = O(max{N 1−µ
log

2 N ,N µ+λ
logN })

7 SIMULATION RESULTS
7.1 Synthetic Dataset
Simulations

2
were carried out to test the performance of RSIDFT

framework for exact matching scenario on a database of length

N = 10
12

for two di�erent query lengths M = 10
5

(µ = 0.41) and

M = 10
3

(µ = 0.25). The database was generated as a equiprobable

{+1,−1} sequence of length N . A substring of length M from the

generated database is presented as a query. Also the chosen query

was repeated at L = 10
6

randomly chosen locations in the database.

The sample gain, de�ned as the ratio of N to the number of

samples used from the sketch of database, was varied and the prob-

ability of RSIDFT framework to miss a match (Pe ), as de�ned below,

2
Code available publicly in https://github.com/tjnagaraj/Pattern-Matching

was measured.

Pe =
# of correctly identi�ed locations

L

The plots of Pe vs. sample gain, is presented in Fig. 4 for two

di�erent query lengths: M = 10
5 (µ = 0.41) in Fig 4(a) and M =

10
3 (µ = 0.25) in Fig 4(b). As can be inferred from the plots we

achieve a sample gain of 200-500 (depending on the tolerable error

probability) for the query length corresponding to µ = 0.41 and a

sample gain of 2-8 for µ = 0.25. This sample gain results from an

average number of samples per branch fi ≈ 9.25×107 (α = 0.66) for

µ = 0.41, and fi ≈ 6.94 × 109 (α = 0.82) for µ = 0.25. The trend in

the results almost matches with the theoretical �ndings of α = 1−µ.

We also notice a sharp threshold in the sample gain, below which

the RSIDFT framework succeeds with very high probability.

7.2 Real Dataset
We did some preliminary tests on a real world dataset to test the al-

gorithm’s performance for signals that do not satisfy our i.i.d model

assumption. We simulated the performance of our algorithm for a

speech signal
3
. Vector ®x corresponded to a 100 second clip sampled

at 48KHz (N = 4800000) and ®y was a sub-string that corresponded

to a 3 second substring. Our algorithm required only a sketch size of

48000 FFT coe�cients providing a 100 times reduction over linear

time techniques. Although, the i.i.d assumption is violated, our

algorithm still provides a good performance improvement over a

linear scheme.

A BIN CLASSIFICATION ERRORS
We employ classi�cation rules based only on the �rst element of

the measurement vector at bin (i, j) which can be given by

Z [1] =



дi−1∑̀
=0

M−1∑
k=0

nl,k if H = Hz

M1 +
дi−2∑̀
=0

M−1∑
k=0

nl,k if H = Hs

M1 +M2 +
дi−3∑̀
=0

M−1∑
k=0

nl,k if H = Hd

(9)

where nl,k = x[θ` + k]y[k] and θ` < {τ1,τ2, . . . ,τL}. Also for

the case of exact matching M1 = M2 = M whereas in the case of

approximate matching the values of M1,M2 ∈ [M(1 − 2η) : M].

Lemma A.1 (zero-ton). Given that the bin (i, j) is a zero-ton, the
classi�cation error can be bounded by

P[E1 |Hz ] ≤ e−
N µ+α−1(1−2η)2

8

Lemma A.2 (singleton). Given that the bin (i, j) is a singleton,
the classi�cation error can be bounded by

P[E1 |Hs ] ≤ 2e−
N µ+α−1(1−4η)2

16

Lemma A.3 (double-ton). Given that the bin (i, j) is a double-ton,
the classi�cation error can be bounded by

P[E1 |Hd ] ≤ 2e−
N µ+α−1(1−6η)2

16

3
available in https://github.com/tjnagaraj/Pattern-Matching
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Figure 4: Plots of probability ofmissing amatch vs. sample gain for exactmatching of a query of lengthM from a equiprobable
binary {+1,-1} sequence of length N = 10

12, divided into G blocks each of length Ñ . The substring was simulated to repeat in
L = 10

6(λ = 0.5) locations uniformly at random.

Lemma A.4 (multi-ton). Given that the bin (i, j) is a multi-ton,
the classi�cation error can be bounded by

P[E1 |Hm ] ≤ e−
N µ+α−1(1−6η)2

16

Proof. The proof for Lemmas A.1 A.2, A.3, A.4 follows similar

lines as in Lemma A.1. For a detailed proof refer to our longer

version [7] (Lemmas 9,10,11). �

B POSITION IDENTIFICATION
We will analyze the singleton identi�cation in two separate cases:

E21: Event where the position is identi�ed incorrectly when the

bin is classi�ed correctly a singleton

E22: In the case of approximate matching, event where the posi-

tion is identi�ed incorrectly when the bin is originally a double-ton

and one of the non-zero variable nodes has already been peeled o�

De�nition B.1 (Mutual Incoherence). The mutual incoherence

µmax(W) of a matrix W = [ ®w1 ®w2 · · · ®wi · · · ®wN ] is de�ned as

µmax(W) , max∀i,j
| ®w†i ®wj |
| | ®wi | |.| | ®wj | |

Lemma B.2 (Mutual Incoherence Bound for sub-sampled

IDFT matrix [[12],Proposition A.1). The mutual incoherence µmax
(Wi,k) of the sensing matrix Wi,k (de�ned in Eq. 6), with B shifts, is
upper bounded by

µmax < 2

√
log(5N )

B

Proof. The proof follows similar lines as the proof for Lemma

V.3. in [12]. �

Lemma B.3. For some constant c1 ∈ R and the choice of B =
4c2

1
log 5N , the probability of error in identifying the position of a

singleton at any bin (i, j) can be upper bounded by

P[E21] ≤ exp

{
−
N µ+α−1(1 − 2η)2(c2

1
− 1)

8(c2
1
+ 1)

}

Lemma B.4. For some constant c1 ∈ R and the choice of B =
4c2

1
log 5N , the probability of error in identifying the position of second

non-zero variable node at a double-ton at any bin (i, j), given that
the �rst position identi�cation is correct, can be upper bounded by

P[E22] ≤ exp

{
−N

µ+α−1 (c1(1 − 2η) − 1)2

8(1 + c2
1
)

}
Proof. The proof for Lemmas B.3 and B.4 can be found in our

longer version[7] (Lemma 14,15). �
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