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ABSTRACT

In the world of professional soccer, performance analytics
about the skill level of a player and the overall tactics of a
match are supportive for the success of a team. These analyt-
ics are based on positional data on the one hand and events
about the game (e.g. pass, shot on target) on the other hand.
The positional data of the ball and players is tracked automat-
ically by cameras or via sensors. However, the events are still
captured manually by human, which is time-consuming and
error-prone. In this paper, we introduce a novel approach to
detect events in soccer matches by utilizing artificial neuronal
networks. As input for the neuronal network, we used several
time-dependent features, which were calculated on basis of
the positional data. The evaluation of the results showed that
it is possible to recognize soccer events in spatio-temporal
data with a high accuracy. Apart of that, we discovered that
the size of the used model and the data granularity have a
strong influence on the quality of the predicted results.

KEYWORDS

event detection, neural networks, soccer analytics, spatio-
temporal data

ACM Reference format:
Keven Richly, Florian Moritz, and Christian Schwarz. 2017. Uti-

lizing Artificial Neural Networks to Detect Compound Events
in Spatio-Temporal Soccer Data. In Proceedings of SIGKDD’17
Workshop on Mining and Learning from Time Series (MiLeTS),

Halifax, Nova Scotia Canada, August 2017 (MiLeTS’17), 7 pages.

https://doi.org/tbd

1 INTRODUCTION

In recent years the use of spatio-temporal data strongly in-
creased in various areas. Especially in the highly competitive
sport sector new insights gained by positional information of
players – tracked by different systems and methods during
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a game – can have a major impact on the training and tac-
tic of a team [6]. For professional soccer clubs performance
analysis is an integral part of the coaching process [4]. In the
context of performance analysis in soccer, many analyses are
based on manually tracked and chronological ordered lists of
game events on the one hand or the positional information
of the players on the other hand [13]. For that reason, the
significance and accuracy of analysis strongly correlates with
the quality of the provided data. Detecting events manually
is a time-intensive and error-prone task. Based on the data
of matches of the German Bundesliga, we discovered that
the events are not time-synchronized with the positional
information and sometimes associated with the wrong player.

Therefore, in this paper we present the implementation and
evaluation of a system that leverages a trained artificial neural
network to automatically detect events in the positional data
of soccer matches. Based on the data of the ball we computed
a set of different significant features to characterize basic
events in soccer (e.g. a pass). In order to train and test the
neural network, we also created a gold standard on the basis
of the positional data and video recordings of the matches.
Additionally, we used a grid-search approach to optimize the
configurations of the applied supervised learning algorithm.
To evaluate the accuracy of our results we used the metrics
precision, recall, and 𝐹1-score.

The paper is organized in the following structure. In Sec-
tion 2 we examine related work. Afterwards, we explain the
properties of the provided data and introduce the created
gold standard. In following section, we describe how the fea-
tures are computed based on the positional data and Section
5 shows how we used these features to train an artificial neu-
ral network. We also provide an evaluation about the quality
of our results (see Section 6). Before we conclude the paper
in Section 8, we present an overview about future work.

2 RELATED WORK

Event detection from time-series data is an important task
in many areas. There are various publications, which demon-
strate that artificial neural networks are a promising approach
to achieve this task. For example in the biomedical domain,
neural networks are used to detect epileptic spikes from EEG
signals [8]. In industrial security, data from wireless sensor
networks is monitored to detect fires or other hazards [19].
Neural networks are a common machine learning model for
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this tasks [7, 8, 17]. In the world of sports, analytics and sta-
tistics are an important aspect in various decision processes
of coaches, analysts, scouts, and managers. Wickramaratna
et al. use neural networks to detect goal events from video
data [20]. Lee et al. use neural networks to classify baseball
hits based on video data [11]. The use of spatio-temporal
data for sports and soccer analytics has received some atten-
tion from researchers. Yue et al. use statistical methods to
evaluate player and team behavior of a soccer match based
on two-dimensional data [21]. Kim et al. discuss several fea-
tures that can be computed from two-dimensional tracking
data [9]. Miller et al. use two-dimensional position data to
detect shooting habits of basketball players [14]. Richly et
al. compare different the three machine learning approaches
k nearest neighbors, support vector machines, and random
forests to recognize kick events in soccer data [16]. There
is also research on how positional data can be used to gain
strategic insights. Lucy et al. compare team strategies in
home and away games using a k-nearest neighbor approach
with ball possession data [12]. As tracking data can be large
in volume, Bialkowski et al. research conducting player and
team analysis on a large data set for one complete soccer
season [2]. Kim et al. take soccer analytics one step further
and present a system that predicts short-term future ball
positions based on motion fields calculated from video [10].

3 DATA FOUNDATION

As mentioned before, there are various providers of spatio-
temporal data for professional soccer games. The quality,
granularity, and accuracy of the data vary between different
competitors and also strongly depend on the used tracking
technology. The provided data sets typically consist of the
positional information of the players and the ball, the manu-
ally tracked list of game events as well as some meta data
about the teams and players. In this paper, we focus on data
of games of the German Bundesliga. Defined by the pitch
size, the range of the two-dimensional coordinates goes from
−52.5 to 52.5 for x and the data range of y goes from −34
to 34 (for pitches of the size of 105 m * 68 m). Since the
pitch size is not exactly defined, these numbers can differ for
other stadiums. The center of the pitch has the coordinates
(0, 0). The position values can exceed these limits. This indi-
cates that the ball went out of bounds. Figure 1 shows the
schematic layout of a soccer pitch and the coordinates of its
bounds.

The list of game events includes the timestamp, event type
and involved players. All events are classified in the categories
pass, shot on target, neutral contact, clearance, duel, foul,
offside, caution, and substitution. Several events, such as
fouls, cautions or substitutions, cannot be detected just by
the positional data of the ball and players. They also depend
on other information, e.g. the signals of the referee. Addi-
tionally, the events are not synchronized with the positional
information. The delay can be up to several seconds. To eval-
uate and train the supervised machine learning algorithms,
we manually created a gold standard based on the video

Y

X(0|0)

(52.5|34.0)

(52.5|-34.0)

(-52.5|34.0)

(-52.5|-34.0)

Figure 1: Soccer pitch with dimensions of bounds

recordings of the games and by taking into consideration the
acceleration values of the ball. The gold standard includes
the following match sections:

∙ Set A25

Match: Berlin vs. Mainz
Season: 2014/15
Time: 00:00 - 03:08
Temporal resolution: 25 Hz

∙ Set A10

Match: Berlin vs. Mainz
Season: 2014/15
Time: 00:00 - 03:08
Temporal resolution: 10 Hz

∙ Set B25

Match: Berlin vs. Mainz
Season 2014/15
Time: 25:00 - 31:42
Temporal resolution: 25 Hz

∙ Set C10

Match: Berlin vs. Braunschweig
Season: 2013/14
Time: 70:00 - 73:20
Temporal resolution: 10 Hz

The presented data sets have different temporal resolution.
The original data have a resolution of 25 Hz. To filter noise
and smooth the data, we applied a simple smoothing function
on the provided data sets A and C. We suspect that this
step could simplify the classification, especially for small data
sets.

From the selected sections, we excluded the times, when the
ball was out of bounds or the game was paused. Afterwards
we compared the gold standard with the provided event list.
We were able to find 121 out of 194 (62.4%) matching events,
within a time period of two seconds and with the same event
type as our event. These events had an average time delay
of 0.77 seconds. As a next step we examined the assigned
player for these events. For the matched events, 18 out of 121
(14.9%) players were not assigned correctly.
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Table 1: Tagged events for gold standard

Set A25/10 Set B25 Set C10 Total

Pass 49 36 50 135

Reception 17 17 12 46

Clearance 0 5 1 6

Shot on Target 2 3 2 7

Total Events 68 61 65 194

Played Time 3:08 min 6:42 min 3:20 min 13:10 min

Excluded Time 0:58 min 1:49 min 1:36 min 4:23 min

Total Time 2:10 min 4:53 min 1:44 min 8:47 min

4 FEATURE COMPUTATION

Multiple features of the tracked objects characterize specific
events in soccer matches. These objects move on the soccer
pitch and influence each other mutually. Events occur when
one or multiple features show a specific characteristic. In
this section, we present the definition of the implemented
features. All features are computed based on the positional
data described in the previous section. The positional data
is received per tracked object in a 2-by-𝑛 matrix where 𝑛 is
the number of collected data points in a specific time period.
Each column vector represents the position of the object 𝑜
at time 𝑡.

𝑃𝑜𝑠𝑜,𝑛 =

(︂
𝑥𝑜,𝑡1 𝑥𝑜,𝑡2 · · · 𝑥𝑜,𝑡𝑛

𝑦𝑜,𝑡1 𝑦𝑜,𝑡2 · · · 𝑦𝑜,𝑡𝑛

)︂
(1)

We can derive the following definitions from the received
positional data. The position of object 𝑜 at time 𝑡 is defined as
𝑝(𝑜, 𝑡). Whereas the horizontal position of object 𝑜 at time 𝑡
is 𝑝𝑥(𝑜, 𝑡) and the vertical position of object 𝑜 at time 𝑡 is
𝑝𝑦(𝑜, 𝑡). Based on the spatio-temporal data, we calculated
the time-dependent movement features velocity, acceleration,
and change of direction. In this context, we concentrated
primarily on features of the ball, because it represents the
main interaction point in the game.

To determine the velocity of two consecutive positions
𝑝(𝑜, 𝑡1) and 𝑝(𝑜, 𝑡2) with 𝑡2 = 𝑡1 + 1, we initially compute
the Euclidian distance of these points. Based on the distance,
we can compute the average velocity or rate of change of
position over time as defined in Equation 3.

𝑑𝑖𝑠𝑡(𝑜, 𝑡1) =√︁
(𝑝𝑥 (𝑜, 𝑡2) − 𝑝𝑥 (𝑜, 𝑡1))2 + (𝑝𝑦 (𝑜, 𝑡2) − 𝑝𝑦 (𝑜, 𝑡1))2

𝑤𝑖𝑡ℎ 𝑡2 = 𝑡1 + 1

(2)

𝑣(𝑜, 𝑡) =
∆𝑑𝑖𝑠𝑡(𝑜, 𝑡)

∆𝑡
(3)

Accordingly, Equation 4 determines the acceleration as the
rate of change of the velocity over time.

𝑎(𝑜, 𝑡) =
∆𝑣(𝑜, 𝑡)

∆𝑡
(4)

While objects move on the soccer pitch they will eventually
change their direction 𝑑.

𝑑(𝑜, 𝑡1) = 𝑝(𝑜, 𝑡2) − 𝑝(𝑜, 𝑡1) 𝑤𝑖𝑡ℎ 𝑡2 = 𝑡1 + 1 (5)

A linear movement results in no significant change of the
direction feature, whereas rapid movement tends to have
a notable change of direction. We computed the change of
direction as visualized in Figure 2.

x

y

P1

P2

P3

d1

d2

dc1

Figure 2: Direction change of object

Given the three position data points 𝑃0 = 𝑝(𝑜, 𝑡0), 𝑃1 =
𝑝(𝑜, 𝑡1) and 𝑃2 = 𝑝(𝑜, 𝑡2), the first direction vectors are
defined as 𝑑0 = 𝑑(𝑜, 𝑡0) and 𝑑1 = 𝑑(𝑜, 𝑡1). The angle created
by 𝑑0 and 𝑑1 is the change of direction 𝑑𝑐1. Possible values
for direction changes are in the range from 0 to 180. To
determine the direction change value, the 𝑎𝑟𝑐𝑐𝑜𝑠 function is
applied to the quotient of the scalar product of 𝑑0 and 𝑑1 and
the product of length of 𝑑0 and 𝑑1. The direction change 𝑑𝑐
of object 𝑜 at time 𝑡𝑛+1 is defined in the following way:

𝑑𝑐(𝑜, 𝑡𝑛+1) = arccos

(︂
𝑑(𝑜, 𝑡𝑛) · 𝑑(𝑜, 𝑡𝑛+1)

|𝑑(𝑜, 𝑡𝑛)| · |𝑑(𝑜, 𝑡𝑛+1)|

)︂
(6)

5 EVENT DETECTION

In following section, we present our approach to recognize
events based on the features already introduced in the previ-
ous section. The most central object of a soccer match is the
ball. The ball is the object that shows the most and highly
rapid movements on the pitch. Therefore, we computed all
features based on the spatio-temporal data of the ball and
created a vector for every time 𝑡 containing all corresponding
feature values.

Velocity and acceleration describe the current momentum.
Acceleration peaks are a indicator for interactions with the
ball. The direction change feature covers ball interactions
with high intensity (e.g. passes) as well as ball interactions
with little intensity (e.g. ball touches during dribbling). Each
vector describes an instant of the soccer match and consecu-
tive vectors can represent a certain event. Depending on the
type of the event, features become more or less important and
have characteristic values. To determine the specific events,
we trained and used an artificial neural network.

Neural networks are biologically inspired models, that can
model complex non-linear functions [15]. They consist of
several connected layers of artificial neurons as shown in
Figure 3. A neuron is a single computational function that
maps several 𝑥𝑖 of an input vector �⃗� (and a bias term b)
to a single output value 𝑎 called activation. It computes a
weighted linear combination 𝑧 of the inputs by using different
weights 𝑤𝑖 for each input and transforms it using a non-linear
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Figure 3: Neural Network consisting of 3 layers with
a single output neuron.

activation function ℎ as shown in Equation 7. A commonly
used activation is the sigmoid function which is defined in
Equation 8.

𝑎 = ℎ(𝑧) = ℎ

(︃∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝑏

)︃
(7)

𝜎(𝑧) =
1

1 + 𝑒𝑥𝑝(−𝑧)
(8)

As shown in Figure 3, the neurons are arranged in layers,
where the outputs or activations of a layer serve as inputs
for the following layers. The term hidden layer denotes all
layers between the input and output layer. The network maps
the inputs �⃗� to outputs y based on the weights 𝑊 and bias
terms 𝐵 of its neurons (cf. Equation 9). To compute the
output for a given input, the activation values of each layer
are computed beginning with the input layer. The next layer
uses the activation of the previous layer (e.g. the input layer)
as input. This process is called forward propagation.

𝑦 (�⃗�,𝑊,𝐵) = �⃗� (9)

The classification of various event types requires differ-
ent output functions. For the multiclass classification of 𝑘
mutual exclusive classes, we used the softmax function [5].
The softmax function for 𝑘 classes is defined in Equation 10.
In contrast to other activation function, the output of the
softmax function is the posterior probability of each class [3].

𝑦𝑘 (�⃗�,𝑊,𝐵) =
𝑒𝑥𝑝(𝑦𝑘)∑︀
𝑗 𝑒𝑥𝑝(𝑦𝑗)

(10)

To train the artificial neural network in a supervised man-
ner, we used a gradient-descent algorithm [1]. As first step, we
initialized the network with randomly setting weight. After-
wards, the training input data with the associated outputs is
used to train the neural network. Based on the corresponding
error function the gradient-descent algorithm of that func-
tion by iteratively updating the weights for 𝑊 and 𝐵 in the
direction of the negative gradient of 𝑊 and 𝐵. However, this
problem is not convex and the found minimum could be only
a local minimum [3].

Figure 4: Acceleration of the ball (squared and nor-
malized, 10 Hz data).

5.1 System Architecture

The core of the event detection system is an artificial neural
network. To train the system, the computed feature data
is transferred from the database and preprocessed for each
match-period. As a first step, the data of each feature is
normalized. Based on the data of the computed features, the
windows are determined accordingly to the labels of the gold
standard (see Section 3). By analyzing the acceleration peaks
(see Figure 4) and the corresponding video sequences, we
determine the window size as 7 frames for the 10 Hz data sets
(𝐴10, 𝐶10) and 18 frames for the 25 Hz data sets (𝐴25, 𝐵25).
In the next step, the three-dimensional feature windows are
flattened to form a one-dimensional training instance, which
is used to train the network.

The network consists of three layers. The size of the input
layer depends on the window size of the used data set. For
the data sets 𝐴10 and 𝐶10 the input layer has 21 neurons to
account for the size of the flattened training instances. In the
case of 25 Hz data the input layer has 54 neurons. The number
of neurons in the hidden layer can be set to an arbitrary
number. However, the number of hidden neurons can effect
the detection performance significantly [15]. For that reason,
we attempt to optimize this aspect of the network design (see
Section 6). As mentioned in the pervious section, the input
layer and hidden layer use the sigmoid activation function
and for the output layer we used the softmax function. After
the training phase the system can be used to determine
the posterior probabilities for each class by analyzing the
computed feature data windows.

The system is implemented in Python using the libraries for
scientific computing numpy1, scipy2 and pandas3. The neural
network implementation is based on the machine learning
frameworks scikit-neuralnetwork4 and scikit-learn5.

5.2 Model Parameters

There are several parameters that influence the detection
accuracy of the underlying neural network model. There-
fore, we tried to increase the performance by optimizing the
configuration of the parameters for the soccer data.

1http://www.numpy.org/
2http://www.scipy.org/
3http://pandas.pydata.org/
4https://github.com/aigamedev/scikit- neuralnetwork
5http://scikit- learn.org/
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In general, there are several parameters in a neural network,
which have an effect on the learning outcome. One of these
is the architecture of the network. The number of neurons
in the hidden layer is not specified and can be adjusted to
the given data set. Neural Networks with a higher number of
neurons have the ability the represent the data characteristics
more precise, but they also have the risk of over fitting the
training data [15]. Therefore we tried to find a number of
hidden neurons that produces the highest general accuracy.

Another factor that has to be taken into account is the
learning rate. It controls the rate at which the weights are
updated on the basis of new information in the learning pro-
cess. Low values result in a network that adopts very slowly.
However, if these values are too high, the learning process
may not converge [15]. To avoid over fitting we implemented
a technique called dropout. Hereby, a random number of
activations is set to zero for each training instance. This
mechanism helps to prevent co-adaption of neurons on the
training data [18]. A too high dropout rate complicates the
effective learning of the network.

To find an optimal model we used a grid-search approach
to test multiple parameter configurations. Here, we list the
parameters and the specified values we used:

∙ Number of Hidden Units
We used different values for 10 Hz and 25 Hz to account
for their different sizes of input to the network.
Values (25 Hz): 1 to 50
Values (10 Hz): 1 to 20

∙ Learning Rate
Values: 0.1, 0.05, 0.01, 0.005, 0.001

∙ Dropout
Values: 0, 0.01, 0.05, 0.1, 0.2

These parameters are augmented by the fixed parameter
for the window size as described in the previous section. The
grid-search implementation uses parallel processing to test
different configurations in parallel and speed up the process.
The results of the grid-search for the presented parameters
are evaluated in following section.

6 EVALUATION

In this section, we present the evaluation results of our ap-
proach. Based on the presented data (see Section 3), we
optimized the configuration of your neural network and com-
pared the accuracy of the different settings. For the evaluation,
we focused on pass events, which occur most frequently in
the gold standard. A pass event consists of two consecutive
actions – kick and reception.

6.1 Preliminaries

To evaluate the quality of our event detection, we used the
gold standard to generate test and training instances. These
instances are labeled windows over the feature data at specific
time points. The system is trained on the training instances
and then presented with the unknown test instances, which
it has to label. Based on the assigned label by the system

Table 2: Optimal parameter configurations for the
different temporal resolutions

Parameter 25 Hz 10 Hz

Number of Hidden Units 50 20
Learning Rate 0.01 0.01
Dropout 0.05 0.01

and the true event we can compute the precision and recall
scores to quantify the detection quality.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(11)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(12)

We also computed the 𝐹1-score, which is the harmonic
mean of precision and recall, and use it as our main evaluation
metric to compare different network settings.

𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(13)

6.2 Model Optimization

Since we have data sets with different temporal resolutions,
we conducted the parameter search for each data set sepa-
rately. For the grid-search approach we selected the labeled
data of the first minutes of the game Berlin vs. Mainz (𝐴25,
𝐴10). Based on the data sets, we generated the training and
testing instances. We tested each configuration by using a
five-fold cross validation with a 60/40 split for training and
testing instances. To compare the accuracy of the different
configuration the 𝐹1-score was used. Table 2 shows the con-
figurations that achieved the highest scores for the given data
set.

6.3 Model Comparison

By using the configurations presented in the previous section,
we analyzed in more detail the accuracy of the different
models. To compare the performance of the 10 Hz and 25 Hz
model, we tested each one using a 100-fold cross validation.
Analogous to the configuration computation, we used a 60/40
split between training and testing instances. Afterwards,
we calculated an overall precision, recall and 𝐹1-score for
each iteration and averaged them over all iterations. The
results are shown in Table 3. The evaluation shows that the
model trained and tested on the 10 Hz data performs much
better than the 25 Hz model with an averaged 𝐹1-score of
0.89, and averaged precision and recall scores of 0.89 and
0.90 respectively. The 25 Hz model only achieves averaged
precision, recall and 𝐹1-scores of 0.52, 0.52 and 0.49.

In the next step, we compared the performance of the two
models per class. Therefore, we calculated the precision, recall
and 𝐹1-scores for each class separately over all iterations. The
results are shown in Table 4. As expected, we observed that
the 10 Hz have a higher accuracy for both classes compared
to the 25 Hz model. For kick events, both models achieved
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Table 3: Precision, recall and 𝐹1-score, averaged over
all classes

Data set Precision Recall 𝐹1-Score

25 Hz 0.52 0.52 0.49
10 Hz 0.89 0.90 0.89

Table 4: Precision, recall and 𝐹1-score per class

Data set Event Precision Recall 𝐹1-Score

25 Hz
Kick 0.73 0.91 0.81
Reception 0.32 0.14 0.18

10 Hz
Kick 0.95 0.92 0.93
Reception 0.82 0.89 0.85

Table 5: Comparison of overall results for different
training and testing strategies for two matches.

Strategy Precision Recall 𝐹1-Score

Merged Matches 0.81 0.75 0.75
Across Matches 0.65 0.73 0.66
Single Match 0.89 0.90 0.89

a similar recall value of 0.91 or 0.92 respectively. However,
the 10 Hz model had a better precision score of 0.95 than
the 25 Hz model, which had a precision score of 0.73. That
results in a 𝐹1-score of 0.93 for the 10 Hz model, and one of
0.81 for the 25 Hz model. Both models detect most of the
true kick events in the data. However, the lower precision of
the 25 Hz model implies that this model is more likely to
detect a false kick event. Next to that, the comparison for
the reception event showed a more diverging picture. The
10 Hz model achieved precision, recall and 𝐹1 scores of 0.82,
0.89 and 0.85. The 25 Hz model however performed not as
well with only 0.32 for precision and 0.14 for recall, with an
averaged 𝐹1-score of 0.18.

This great difference in performance could be due to the
fixed size of the gold standard and the fact that the 25 Hz
model is more complex to train due to its larger structure.
In this experiment we used the data of match 𝐴10 and 𝐴25,
for which the gold standard holds 85 labeled kick events but
only 34 reception events. One reason for the performance
differences could be the unequal distribution of kick and
reception events.

To summarize the previous experiment we can state that
a model trained and tested on 10 Hz data achieved a higher
accuracy compared to one trained and tested on the 25 Hz
data, using the given gold standard. This could be due to
the fact that the 10 Hz data has been smoothed and has
therefore fewer outliers.

6.4 Model Evaluation

In this section, we evaluate the effects on the performance
of the event detection when the training and testing data
derived from different matches (merged matches strategy) or
the model was trained with data form one soccer match and
tested with data from another (across matches strategy). For

this evaluation, we focused on the 10 Hz model, because it
produced the best results in the previous experiments. The
motivation for this evaluation is that the characteristics (e.g.
playing speed, team tactics) of a game could vary between
different matches and teams.

First, we trained and tested the model on the merged data
of two different matches (𝐴10 and 𝐶10) to set a baseline. We
merged the data sets of the matches of Berlin vs. Mainz and
Berlin vs. Braunschweig. Afterwards, we extracted training
and testing instances based on a 60/40 split. The presented
results for the merged matches strategy are averaged over
100 iterations with a random selection of training and testing
values.

The second evaluated strategy is the across matches strat-
egy. In this case, the training instances for the model were
randomly selected from data set 𝐴10 and afterwards tested on
instances of the data set 𝐶10. The results of the two strategies
are listed in Table 5 together with the single match results
of the previous section.

In general, we observed that the scores for the merged
matches strategy have a higher accuracy compared to the
results of the across matches strategy. However, both have a
lower performance in comparison to the single match strategy,
where only one single match was used for training and testing.
This suggests that we have to consider differences in playing
style between different matches.

When we drill down and evaluate the performance per
class, the results show that the scores for kick events are
generally higher than those for reception events in all evalu-
ated strategies. For the kick events both strategies produced
results comparable to these of the model, which was eval-
uated on a single match. One exception to that was the
recall of the across matches strategy, which was slightly lower
with a value of 0.72 compared to 0.93 and 0.92 for the other
strategies. The implication of this is that applying the across
matches strategy will not be able to detect as many of the
real kick-events. In comparison to the scores of the kick class,
the scores of the reception class are much lower. While for
the merged matches strategy the receptions have a precision
of 0.75 and recall of 0.56, for the across matches strategy
they have a precision of 0.39 and a recall of 0.75.

To conclude, the results showed that neural networks
present a viable model to detect events in soccer data. Our
experiments showed that keeping the complexity of the model
low in combination with smoothed data helps to achieve bet-
ter results. The best results were achieved if the model was
trained and tested on data of a single match or mixed matches.
For that reason, we recommend to use merged data of differ-
ent matches as training instances to classify completely new
matches.

7 FUTURE WORK

Our experiments have shown that neural networks are gener-
ally a suitable model to perform event detection on spatio-
temporal soccer data. However, since we used two-dimensional
data without height information, the features we calculated
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Table 6: Comparison of results by event for different
training/testing strategies for two matches

Strategy Event Precision Recall 𝐹1-Score

Merged Matches
Kick 0.86 0.93 0.90
Reception 0.75 0.56 0.61

Across Matches
Kick 0.92 0.72 0.81
Reception 0.39 0.75 0.51

Single Match
Kick 0.95 0.92 0.93
Reception 0.82 0.89 0.85

cannot capture ball movements on the z-axis. This fact leads
to small inaccuracies in the computed features. For that
reason, the incorporation of the z values could improve the
accuracy of the features and consequently lead to an improve-
ment of the results. As our experiments have shown, there is
a difference in detection quality between the models working
with the smoothed 10 Hz and 25 Hz data. We have to further
analyze, if this is due to the fact that the gold standard
includes only manageable number of events or if the data
smoothing supports the learning capabilities. Accordingly,
the effects of different smoothing function on the accuracy of
the results could be evaluated.

8 CONCLUSION

In this paper we presented a system that is able to de-
tect events from spatio-temporal soccer data. Using two-
dimensional positional data, we computed velocity, accelera-
tion and change of angle features to capture time-dependent
movement information from the data. On these features, we
then trained a neural network to detect kick and reception
events and optimize its parameters through a grid-search
approach. We evaluated and compared the event detection
performance on raw 25 Hz data and smoothed 10 Hz data.
Our experiments showed, that the neural network trained and
tested on 10 Hz data achieved an 𝐹1-score of 0.89 whereas a
network for 25 Hz data achieved only a score of 0.49. Both
models achieved high scores for kick events, however the 10
Hz model performed substantially better on reception events
with a 𝐹1-score of 0.85, compared to 0.18 for the 25 Hz
model. The evaluation of the precision, recall, and 𝐹1-score
showed that neural networks are a viable model to detect
events in spatio-temporal soccer data. Further experiments
showed that training and testing on different matches have
a significant effect on the accuracy of the results. This indi-
cates that different matches and teams have different game
characteristics, which influence the detection performance.
To minimize those effects, the training data should consist of
data from different matches.
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