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ABSTRACT
In an era of ubiquitous large-scale streaming data, the availability

of data far exceeds the capacity of expert human analysts. In many

settings, such data is either discarded or stored unprocessed in data

centers. This paper proposes a method of online data thinning, in
which large-scale streaming datasets are winnowed to preserve

unique, anomalous, or salient elements for timely expert analysis.

At the heart of this proposed approach is an online anomaly detec-

tion method based on dynamic, low-rank Gaussian mixture models.

Specifically, the high-dimensional covariance matrices associated

with the Gaussian components are associated with low-rank mod-

els. According to this model, most observations lie near a union of

subspaces. The low-rank modeling mitigates the curse of dimen-

sionality associated with anomaly detection for high-dimensional

data, and recent advances in subspace clustering and subspace track-

ing allow the proposed method to adapt to dynamic environments.

The resulting algorithms are scalable, efficient, and are capable of

operating in real time. Experiments on wide-area motion imagery

illustrate the efficacy of the proposed approach.
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1 INTRODUCTION
Modern sensors are collecting high-dimensional data at unprece-

dented volume and speed; human analysts cannot keep pace. For

instance, many sources of intelligence data must be translated by

human experts before they can be widely accessible to analysts and

actionable; the translation step is a significant bottleneck [55]. Typi-

cal NASAmissions collect terabytes of data every day [28, 45, 48, 50].

Incredibly, the Large Hadron Collider (LHC) at CERN “generates so

much data that scientists must discard the overwhelming majority
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of it—hoping hard they’ve not thrown away anything useful.” [30]

There is a pressing need to help analysts prioritize data accurately
and efficiently from a storage medium or a data stream. This task

is complicated by the fact that, typically, the data is neither thor-

oughly annotated nor meaningfully catalogued. Failure to extract

relevant data could lead to incorrect conclusions in the analysis,

while extraction of irrelevant data could overwhelm and frustrate

human analysts, throttling the discovery process.

This paper focuses on scalable online data processing algorithms
that can winnow large datasets to produce smaller subsets of the
most important or informative data for human analysts. This process
is described as “data thinning.” Often, the data thinning process

involves flagging observations which are inconsistent with previous

observations from a specified class or category of interest, or are

ranked highly according to a learned ranking function. Typically

we are interested in methods which can perform these assessments

from streaming data, as batch algorithms are inefficient on very

large datasets.

One generic approach to the problem of data thinning for large

quantities of (possibly streaming) high-dimensional data requires

estimating and tracking a probability distribution ft underlying the
stream of observations xt , and flagging an observation as anoma-

lous whenever f̂t (xt ) < τ for some small threshold τ > 0, as

demonstrated in past work [42, 57]. Ultimately, the goal is to ensure

that the flagged data is salient to human analysts on the receiving

end without being buried in an avalanche of irrelevant data. Within

this general framework, there are three key challenges:

• Dynamic environments: The data may not be from a station-

ary distribution. For example, it may exhibit diurnal, location-

or weather-dependent patterns. Effective data thinning methods

must adapt to those dynamics and sources of bias. Global sum-

mary statistics and naive online learning algorithms will fail in

this context.

• High-dimensional data: Individual data points xt may be high-

dimensional, resulting in the classical “curse of dimensionality”

[13, 41]. While large quantities of data may be available, the

combination of high-dimensional data and a non-stationary en-

vironment still results in an ill-posed estimation problem.

• Real-time processing: In applications like those with NASA

and CERN, large quantities of streaming data preclude computa-

tionally intensive or batch processing.

1.1 Data thinning for wide-area motion
imagery

While our approach is not restricted to imaging data, one important

application of our data thinning approach is real-time video analysis.

Recent advances in optical engineering have led to the advent of
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new imaging sensors that collect data at an unprecedented rate

and scale; these data often cannot be transmitted efficiently or

analyzed by humans due to their sheer volume. For example, the

ARGUS system developed by BAE Systems is reported to collect

video-rate gigapixel imagery [15, 38], and even higher data rates

are anticipated soon [18, 20, 37]. This type of data is often referred

to as wide-area motion imagery (WAMI). Currently WAMI streams

are used primarily in a forensic context – after a significant event

occurs (e.g., a security breach), the data immediately preceding the

event are analyzed reactively to piece together what led to that

event. However, there is a strong need for predictive analysis which

can be used to help anticipate or detect negative events in real time.

Unfortunately, the latter form of analysis is often infeasible for

two reasons: (1) the data acquisition rate exceeds the capacity of

many sensor platforms’ downlinks; and (2) size, weight, and power

constraints limit processing capabilities on airborne sensor plat-

forms. Thus an emerging and fundamental challenge is efficiently
downloading salient information to ground-based analysts over a
limited-bandwidth channel. While data compression has a long his-

tory, conventional compression methods may distort information

particularly relevant to analysts. In particular, standard motion im-

agery compression techniques typically focus on optimizing peak

signal-to-noise ratio or psycho-visual metrics which apply globally

to an entire video and are often unrelated to any specific task.

Instead, a better solution would be to identify unique objects or

regions of WAMI, and transmit only features of these objects. This

concept is illustrated in Fig. 1. Ideally, this method will identify

regions and features of a data stream most critical to a given task,

and prioritize these features when preparing data for storage or

transmission. This task is clearly related to “visual saliency detec-

tion” (cf., [40, 43, 44, 58]); we describe the connections between the

proposed work and saliency detection in Section 2.

Note that in this setting a key challenge is that the sensor may

be placed on a vibrating platform that introduces significant jitter

into the data and precludes direct comparison of successive frames.

While real-time video stabilization has been considered in the video

processing literature (cf., [11, 25, 35, 39, 59]), such methods are often

robust for small motions associated with a hand-held device and

break down with large motions associated with mechanical vibra-

tions. More robust methods capable of processing larger degrees

of jitter can be computationally prohibitive on energy-constrained

platforms.

1.2 Problem formulation and approach
Suppose we are given a sequence of data x1,x2, . . . , and for t =
1, 2, . . ., xt ∈ Rp , where p denotes the ambient dimension. Assume

that xt comes from some unknown distribution, i.e., there exists
some sequence of distributions Pt such that

xt ∼ Pt t = 1, 2, . . .

where Pt evolves over time, and its distribution density function is

denoted by ft . The goal is to find the xt that are unusual or anoma-

lous. In particular, we assign each observation xt an anomalousness
score proportional to its negative log likelihood under the estimated

model—i.e., − log ft (xt ). Observations with a high anomalousness

score can then either be directed to a human analyst or flagged for

further processing and analysis.

Airborne wide 
area motion 

imagery sensor

On-board processor quickly 
identifies image patchs away 

from learned model

Ground-based processor per-
forms registration and high-

er-level analyses

Task-specific 
transmission of 
salient patches

Figure 1: Conceptual illustration of proposed objectives. An air-
borne platform collects wide-area motion imagery (WAMI), identi-
fies task-specific salient patches, and transmits only those patches.
The ground-based receiver can then perform more sophisticated
processing, including registration, geolocation, and activity analy-
sis.

The key challenge here is two-fold: (a) the dimension of the

signal, p, can be quite large, and (b) ft may evolve rapidly over

time. The combination of these factors means that our problem is

ill-posed.

This paper proposes a method for estimating and tracking the

time-series of density functions ft over Rp . In stationary, low-

dimensional settings, we might consider a Gaussian mixture model

that could be estimated, for instance, using an online expectation-

maximization (EM) algorithm [61]. However, the non-stationary

setting and high dimensions make that approach unviable, as we

demonstrate experimentally later in the paper. The proposed ap-

proach, by contrast, considers a constrained class of Gaussian mix-

ture models in which the Gaussian covariance matrices (each in the

positive-semidefinite cone S
p
+) are low-rank. This model is equiv-

alent to assuming most xt lie near a union of low-dimensional

subspaces. While this union of subspaces is unknown a priori, we
may leverage recent advances in subspace tracking (cf., [10, 27, 49])
and subspace clustering (cf., [1–3, 5, 16, 19]) to yield an accurate

sequence of density estimates
ˆft , and mitigate the curse of dimen-

sionality.

2 RELATEDWORK
While data thinning is an emerging concept associated with mod-

ern high-dimensional, high-velocity data streams, the formulation

described in Section 1.2 is closely related to anomaly detection,

visual saliency detection, and subspace clustering and tracking.

2.1 Anomaly detection
The study of anomaly detection has a long and rich history [32].

However, most existing detection methods do not work well with

high dimensional data, and often do not work online. A 2009 survey

[24] categorizes the available methods into six different categories,

of which cluster-based methods, statistical anomaly detection meth-

ods, and spectral methods are most related to this work.
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Cluster-based methods (cf., [23, 56]) work by first assigning data

into clusters, then compute anomaly score based on the data’s

cluster assignment. The computational costs of these methods are

usually high, and the performance highly depends on the distance

measure, which are often problem-dependent.

Certain statistical methods (cf., [4, 6]) assume that the data are

drawn from some standard or predetermined distribution, and de-

termines outliers by computing the likelihood of the signal coming

from such distributions. These methods do not rely on a big training

set, but estimating the distribution of high-dimensional data is a

non-trivial task, and the statistical assumptions do not always hold

true.

Spectral methods (cf., [7, 31]) assume that data can be embed-

ded into a lower dimensional subspace, and detect anomalies over

the embedded space rather than the original space.Spectral meth-

ods are well-suited to high-dimensional data. However, they can

incur high computational costs; even online anomaly detection al-

gorithms (cf., [8, 46]) face this challenge. Furthermore, the subspace

model underlying spectral methods is less flexible than the union

of subspace model underlying this paper’s proposed method.

2.2 Visual saliency detection
In the special case of imagery or video data, data thinning is closely

related to visual saliency detection. Like anomaly detection, saliency

detection has been widely studied over the last few decades. A stan-

dard benchmark for comparison in image saliency detection is

proposed by Itti et al. in [44]. This paper attempts to explain human

visual search strategies, using biologically motivated algorithms.

However, this algorithm is too slow to apply to real time videos.

Hou and Zhang in [43] use spectral analysis to detect salient objects

for faster speed. However, the analysis breaks down when multiple

types of salient objects are present in the scene. Graph-based meth-

ods (cf., [40]) has very good performance, but suffers from high

computational complexity. The cluster-based algorithm proposed

in [58] works better than [44], but not as well as the graph-based

algorithms. The information theoretic model based algorithm pro-

posed in [22] works as well as [44], but requires much less tuning.

[72] improved the work of [22], with better performance and faster

speed.

Methods for image saliency detection have been extended to

video saliency detection, but those methods assume a stable imag-

ing platform and video stream free of jitter. In theWAMI application

described above, however, sensors can be placed on vibrating plat-

forms that preclude most video saliency detection methods.

2.3 Subspace clustering and tracking
The proposed method is also closely related to the subspace clus-

tering and tracking algorithms. Subspace clustering methods clus-

ter observations into low-dimensional subspaces to mitigate the

curse of dimensionality, which often make nearest-neighbors-based

methods inaccurate [14]. Correlation clustering methods (cf., [1–
3, 5, 16, 19]) can identify multiple arbitrarily angled subspaces at the

same time, but all share the same problem of high computational

cost. Even [1], which is shown to beat other methods in speed, still

has an overall complexity of O(p2T 2), where p is the dimension of

the problem, and T is the total number of data points. More recent

methods based on sparse modeling (cf., [33, 34, 54, 65, 66]) require
solving convex optimization problems that can be inefficient in

high-dimensional settings. Thus, the high complexity of the algo-

rithms make them less than ideal candidates for an efficient online

algorithm.

Subspace tracking is a classical problem that experienced re-

cent attention with the development of algorithms that are ro-

bust to missing and outlier elements of the data points xt . For
example, the Grassmannian Rank-One Update Subspace Estimation

(GROUSE) [10], Parallel Estimation and Tracking by REcursive Least

Squares (PETRELS) [27], and Robust Online Subspace Estimation

and Tracking Algorithm (ROSETA) [49] effectively track a single

subspace using incomplete data vectors. These algorithms are ca-

pable of tracking and adapting to changing environments. The sub-

space model used in these methods, however, is inherently strong,

whereas a plethora of empirical studies have demonstrated that

high-dimensional data often lie near manifolds with non-negligible

curvature [9, 12, 60].

In contrast, the non-parametric mixture of factor analyzers [26]

uses a mixture of low-dimensional approximations to fit to un-

known and spatially-varying (but static) curvatures. The Multiscale

Online Union of SubSpaces Estimation (MOUSSE) method devel-

oped by Xie et al. [70] employs union of subspaces tracking for

change point detection in high-dimensional streaming data. Thanks

to the adoption of the state-of-the-art subspace tracking techniques,

the algorithm is both accurate and efficient (with complexity linear

in p). However, MOUSSE cannot be directly applied for our data

thinning task for a few reasons. First, MOUSSE is designed for

change-point detection and does not have a probabilistic model.

Thus observations in a rare subspacewould still be treated as typical,

which makes it difficult to discover the rare observations. Second,

MOUSSE can only process one observation at a time, i.e., it does not
allow for mini-batch updates that can be helpful in data thinning

applications, where data could arrive in blocks. Last but not least,

although MOUSSE is able to deal with missing data, [70] does not

explore the computational-statistical tradeoffs that are important

for time- or power-sensitive applications. This paper presents a

method that is designed for the data thinning task, has a specific

statistical model, and allows for mini-batch updates which increases

the algorithm’s efficiency.

3 DATA THINNING VIA TRACKING UNION
OF SUBSPACES

3.1 Union of subspaces model
Recall from Section 1.2 that each xt ∈ R

p
is assumed to be drawn

from a distribution with density ft , and that ft is modeled as a

mixture of Gaussians where each Gaussian’s covariance matrix is

the sum of a rank-r matrix (for r < p) and a scaled identity matrix.

We refer to this as a dynamic low-rank GMM. In particular, the jth

Gaussian mixture component is modeled as

N
(
µ j,t , Σj,t

)
where µ j,t ∈ R

p
is the mean and Σj,t = Vj,tΛj,tV

T
j,t + σ

2

j I .

Here Vj,t ∈ Rp×r is assumed to have orthonormal columns, and

Λj,t ∈ R
r×r

is a diagonal matrix with positive diagonal entries. If

σj = 0, then Σj,t would be rank-r and any point drawn from that
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Gaussian would lie within the subspace spanned by the columns of

Vj,t – shifted by µ j,t . By allowing σj > 0 we model points drawn

from this Gaussian lying near that r -dimensional shifted subspace.

Overall, we model

ft =

Kt∑
j=1

qj,tN
(
µ j,t ,Vj,tΛj,tV

T
j,t + σ

2

j I
)

(1)

whereKt is the number of mixture components in the model at time

t and qj,t is the probability of xt coming from mixture component

j.
To better understand this model, we can think of each obser-

vation xt as having the form vt +wt , where vt lies in a union of

subspaces (or more precisely, because of the Gaussian means, a

union of affine subspaces) defined by theVj,t s and within ellipsoids

embedded in those subspaces, where the ellipsoid axis lengths are

determined by the Λj,t s.

Fig. 2 illustrates the union of subspaces model. Fig. 2a shows a

sample image where one person is walking on a road with trees on

both sides [63]. We would want to learn from a sequence of such

images that the trees, grass and the road which occupy most of

the pixels are typical of the background, and label the person as

salient because it is uncommon in the scene. Fig. 2b illustrates the

union of subspaces model. When we divide the image into patches,

the vast majority of patches are plant and road patches, and only

a few patches contain the person. The plant and road patches live

on a union of subspaces as illustrated and can be thinned, leaving

anomalous patches for further analysis.

3.2 Algorithm highlights
This section explains how the proposed method estimates the evolv-

ing Gaussian mixture model using the techniques from the union

of subspaces tracking algorithms. These steps are summarized in

in Fig. 3. As seen, this data thinning method shares some features

with the online EM algorithm for GMM estimation. However, there

are a few key differences which are elaborated below:

• We constrain covariances to lie in a union of subspaces, which sig-

nificantly reduces the problem size for estimating the covariance

matrices. This constraint improves the accuracy of the algorithm,

and also makes our method much stabler when the environ-

ment is changing rapidly relative to the data availability. This

constraint also reduces computation time.

• In some settings, such as when working with WAMI data, we

receive groups of xt ’s simultaneously and can perform model

updatesmore efficiently usingmini-batch techniques (more details

in Section 3.3.3).

• For large, high-velocity data streams, real-time processing is para-

mount. Even evaluating the likelihood of each new observation

can be time consuming. The subspace model and mini-batch

approach we take reduces computation complexity.

• For the online GMM estimation algorithm [61], the number of

mixture components is selected a priori, and does not change for

the duration of the task. Existing method like [36] can estimate

the number of mixture components, but the algorithm is batch-

based and does not easily adapt to streaming data. The proposed

method adapts to changing numbers of mixture components, which

(a) Image of a pedestrian walking on a road with trees on
the sides

Person 
Road 

Green leaves 

Tree trunks 
and branches  

(b) Illustration of the union of subspaces idea

Figure 2: Illustration of the union of subspaces idea. Fig. 2a
shows a pedestrian walking on a road with trees on the sides
[63]. The road and the plants occupy most of the pixels, and
they can be considered living in a union of subspaces. The
person on the road would be considered as an outlier.

allows the mixture model to better track the environmental dy-

namics. The method adapts the number of mixture components

using a multiscale representation of a hierarchy of subspaces.

(More details about the multi-scale model is discussed in Sec-

tion 3.3.)

3.3 The Online Thinning algorithm
This section describes the updates of the parameters associated with

the proposed dynamic low-rank GMM in (1). The updates of the

mixture component weights (qj,t ) and means (µ j,t ) are computed

using stochastic gradient descent. The updates of the covariance

matrices are more sophisticated and leverage subspace tracking

methods.

The biggest challenge is updating Kt , the number of mixture

components. In real-life applications, the number of mixture compo-

nents is in general (a) not known a priori, and (b) can change with t .
Thus a mechanism for adaptively choosing the number of subspaces

is needed. Reducing model order is slightly less challenging because
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Initialize the mixture model based on a small 
number of training samples  

With each new observation, compute its 
likelihood under each of the mixture 

components, and assign the observation to the 
component that maximizes the likelihood 

Compute the anomalousness score, which is 
the negative log-likelihood of the observation 

under the current mixture model  

Update the mixture model parameters using 
union of subspaces tracking techniques 

Discard observations with low anomalousness 
scores (high likelihood), and flag remaining 

observations for subsequent analysis or 
transmission to a receiver 

Figure 3: Flow chart of the main steps in the data thinning
method.

it is relatively simple to merge two nearby mixture components.

However, increasing model order is a much more complex issue,

especially in an online setting.

To address these challenges, we organize these mixture compo-

nents using a tree structure, as illustrated in Fig. 4. The idea for a

multiscale tree structure stems from the multiscale harmonic analy-

sis literature [29] and online updates of such models are introduced

in [70]. In our setting, at time t , the jth node is associated with a

Gaussian distribution parameterized by its mean vector µ j,t , low-
rank covariance matrix parametersVj,t ,Λj,t , and weight qj,t . Most

of the probability mass associated with each Gaussian is an ellipsoid

centered at µ j,t , whereVj,t and Λj,t characterize the principle axes

and principal axis lengths, respectively, of the ellipsoid. Finally, qj,t
is approximately the probability of an observation falling inside

this ellipsoid.

In the tree structure, we denote the set of leaf nodes as Jt ,

{j : jth node is a leaf node at time t} and have Kt , |Jt |. The

leaves of the tree correspond to the Gaussian mixture components

in the model shown in Eq. (1). Each parent node corresponds to

a single Gaussian which approximates the weighted sum of the

Gaussians associated with its two children, where the weights

correspond to the children’s q parameters. Each of the tree leaves is

also associated with two virtual children nodes. The virtual children
nodes correspond to their own Gaussian distributions that can be

used to grow the tree. The decision of pruning and growing are

made based on (a) the accuracy of the Gaussian mixture model,

i.e., the cumulative (with a forgetting factor) anomalousness score,

and (b) the size of the mixture model, i.e., the total number of leaf

nodes at time t .

3.3.1 Computation of the Gaussianmixture likelihood (and anoma-
lousness score). The proposed algorithm uses the negative log-

likelihood of the Gaussian mixture model give the data point as

Figure 4: Multiscale representation of low-rank Gaussian
mixture model. Consider a density with its mass concen-
trated along the black dashed curve. Each successive level
in the multiscale representation has more Gaussian mix-
ture components (depicted via contour plots) with covari-
ance matrices corresponding to more compact ellipsoids,
and hence yields a more accurate approximation of the un-
derlying density. Given a particular binary tree representa-
tion of a GMM, the approximation error can be allowed to
increase or decrease by pruning or growing the binary tree
connecting the different scales. The ellipsoids are all very
compact along some axes because they correspond to covari-
ance matrices that are the sum of a low-rank matrix and a
scaled identity matrix.

its anomalousness score. The likelihood of xt under the Gaussian
associated with node j is given by (recall Σj,t = Vj,tΛj,tV

T
j,t + σ

2

j I )

pj,t (xt ) =
1

(2π )p/2 |Σj,t |1/2
e−

1

2
(xt−µ j,t )T Σ−1j,t (xt−µ j,t ). (2)

Using the model in Eq. (1), the Gaussian mixture negative log-

likelihood function (and hence anomalousness score) for any xt ∈
Rp is:

st (xt ) = − log ft (xt ) = − log

©«
∑
j ∈Jt

qj,tpj,t (xt )
ª®¬ . (3)

3.3.2 Selective update. With the observation of each xt , the
algorithm first compute the likelihood of xt under each of the

Gaussian mixture components, and then assign xt to the compo-

nent that maximizes the likelihood. Specifically, after the likeli-

hood computations above, xt is assigned to the mixture component

j∗t , argmaxj ∈Jt {pj,t (xt )}. Note that the weights qj,t are not

used here in order to avoid biasing towards components with large

weights. This assignment is made in order to reduce the compu-

tational complexity of the parameter update step: with each xt ,
instead of updating all the parameters of the entire tree, the algo-

rithm only updates the tree branch associated leaf node j∗t . That is,
the algorithm updates the parameters of node j∗t , all of its ancestors,
and one of node j∗t ’s virtual children (the one under which xt is
more likely). This approach significantly reduces the time complex-

ity of the updates, especially when the model is complex (i.e., when
the number of leaf nodes is large).



KDD’17, August 2017, El Halifax, Nova Scotia Canada Xin J. Hunt and Rebecca Willett

3.3.3 Mini-batch update. In many applications, multiple obser-

vations can arrive simultaneously. For example, in WAMI settings,

hundreds of image patches in a single frame arrive at the same time.

One way to deal with this is simply treat each patch as arriving at

a different time, and update the model parameters separately with

each observation. However, when the number of patches is large

(e.g., for HD videos, there can be thousands of patches per frame),

this sequential processing can be extremely time-consuming.

To reduce the computation cost, we instead update the mixture

model in mini-batches. When multiple observations are received at

the same time, we first compute the anomalousness score of each

observation, and assign them to their own mixture component. The

collection of observations assigned to a given mixture component

then form a mini-batch. The tree nodes and tree structure are then

updated once per mini-batch. When the size of mini-batches is

much larger than 1, this approach significantly reduces the num-

ber of times needed to update the mixture component parameters

and tree structures. Note that this mini-batch processing does not

affect the computation of the anomalousness score and component

assignment, where each observation is processed sequentially.

Thus, now we assume that we receive a collection of observa-

tions stored in matrix Xt = [xt,1, . . . ,xt,Nt ] ∈ Rp×Nt
at time t ,

where xt,i ∈ Rp for all i = 1, . . . ,Nt . A special case of this is

Nt = 1, which is the sequential update without mini-batches. After

assigning each column in Xt to the Kt leaf nodes in the hierar-

chical tree structure based on their distance to the correspond-

ing mixture components, we can rewrite Xt into mini-batches,

Xt = [X j1,t , · · · ,X jKt ,t ], where {j1, . . . , jKt } ⊆ Jt . Here each

X ji ,t ∈ Rp×nj,t , i = 1, . . . ,Kt is a block of nj,t data points that are

assigned to the jthi node in the tree (must be a leaf node). Note that∑
j ∈Jt nj,t = Nt .

Our update equations are based on a “forgetting factor” α ∈

(0, 1) that places more weight on more recent observations; this

quantity affects how quickly a changing distribution is tracked and

is considered a tuning parameter to be set by the end user. Then for

each leaf node j that needs updates (i.e.,with assigned observations),
the weights qj,t are then updated by

qj,t+1 = αqj,t + (1 − α)
nj,t

Nt
. (4)

Note that for the leaf nodes theweights need to add to 1, i.e.,
∑
j ∈Jt qj,t =

1 for all t . If we initialize qj,1 s.t.
∑
i ∈J1

qj,1 = 1 , and the weight

of any parent node is the sum of the weights of its two children,

then this update preserves

∑
i ∈Jt qj,t = 1 for all t . The mixture

component means µ j,t are updated by

µ j,t+1 = αµ j,t +
(1 − α)

nj,t
X j,t1nj,t×1. (5)

The diagonal matrix Λj,t , diag{λ
(1)

j,t , . . . , λ
(r )
j,t } ∈ Rr×r , with

λ
(1)

j,t , . . . , λ
(r )
j,t ≥ 0, contains eigenvalues of the covariance matrix of

the projected data onto each subspace. Let

Mj,t = [µ j,t , . . . , µ j,t ] ∈ R
p×nj,t

(6)

be a means matrix computed by concatenating nj,t copies of µ j,t
together. Let

Bj,t = V
#

j,t (X j,t −Mj,t ) (7)

be the residual signal, where the superscript
#
denotes the pseudo-

inverse of a matrix (for orthonormal Vj,t , the pseudo-inverse is its

transpose). Denote itsmth
row as B

(m)

j,t . Then we can update

λ
(m)

j,t+1 = αλ
(m)

j,t + (1 − α)∥B
(m)

j,t ∥2
2
,m = 1, . . . , r . (8)

The subspace matrices Vj,t are updated using Algorithm. 1. The

updates ofVj,t and Λj,t are a mini-batch extension of the PETRELS

[27] update equations, with an added step of orthonormalization

of Vj,t+1 since PETRELS does not guarantee the orthogonality of

Vj,t+1.
For the ancestors of each leaf node that need updates, we combine

all the mini-batches assigned to its children, and update the node

with the same formulae as above using the combined mini-batches.

For the virtual children of leaf nodes that need updates, we divide

each mini-batch into two sub-mini-batches based on the likelihood

of each observation under the Gaussian of the virtual node, and

update each virtual node with its assigned sub-mini-batch.

Algorithm 1 Mini-Batch Update of Covariance Parameters

1: Initialize: Vj,1 (with training data), Rj,1 = c1r×r , c ≪ 1

2: input: X j,t ,Vj,t ,Rj,t ,Mj,t
3: Bj,t = V

#

j,t (X j,t −Mj,t )

4: Rj,t+1 = αRj,t + Bj,tB
T
j,t

5: Ṽj,t+1 = Vj,t +
(
(X j,t −Mj,t )B

T
j,t −Vj,tBj,tB

T
j,t

)
R#j,t+1

6: Orthonormalization

Vj,t+1 = Ṽj,t+1
(
ṼT
j,t+1Ṽj,t+1

)− 1

2

7: Output: Vj,t+1,Rj,t+1

3.3.4 Tree structure update. The growing (splitting nodes) and

pruning (merging nodes) of the tree structure allow the complexity

of the GMM to adapt to the diversity of the observed data. The num-

ber of nodes in the tree controls the tradeoff between the model ac-

curacy and complexity. The proposed method determines whether

to grow or prune the tree by greedily minimizing a cost function

consisting of the weighted cumulative anomalousness score (with

weights corresponding to the forgetting factor α described above)

and the model complexity (|Jt |).

Define ϵt as the cumulative anomalousness score where ϵ0 =

0, and ϵt+1 = αϵt +
1

Nt

∑Nt
i=1 st (xt,i ). For each node j (includ-

ing virtual children), a similar cumulative score ej,t is kept based
only on the mini-batches assigned to that node. Let Ij,t , {i :

xt,i assigned to jth node or its children} (for virtual nodes this set

is the indices of its sub-mini-batch), initialize ej,0 = 0, and ej,t is
updated by

ej,t+1 = αej,t +
1

|Ij,t |

∑
i ∈Ij,t

− log

(
pj,t (xt,i )

)
. (9)

Let tol be a pre-set error tolerance. For each leaf node j1 ∈ Jt
that is assigned new observations, let j0 be its parent, j2 be its sibling,
and j1,1, j1,2 be its virtual children. Letγ be a positive constant. Split

node j1 if

ϵt+1 ≤ tol, (10)
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and

ej1,t + γKt >
qj1,1,tej1,1,t + qj1,2,tej1,2,t

qj1,1,t + qj1,2,t
+ γ (Kt + 1). (11)

Note the left side of Ineq. (11) is the penalized cumulative score of

node j1 (where the penalty is proportional to the number of nodes

in the tree), while the right side of Eq. (11) is the average penalized

cumulative score of node j1’s two virtual children. We split node j1
if the average penalized cumulative score is smaller at the virtual

children level.

Similarly, merge nodes j1 and j2 if

ϵt+1 ≥ tol (12)

and

ej0,t + γ (Kt − 1) <
qj1,tej1,t + qj2,tej2,t

qj1,t + qj2,t
+ γKt , (13)

Note the left side of Ineq. (13) is the penalized (with tree size)

cumulative score of node j1’s parent j0, while the right side of

Eq. (11) is the average penalized cumulative score of node j1 and its
sibling j2. We merge j1 and j2 if the average penalized cumulative

score of j1 and j1 is larger than the penalized score of their parent.

The use of these penalized scores to choose a tree which is both

(a) a good fit to the observed data and (b) as small as possible to

avoid overfitting is common in classification and regression trees

[21, 53, 62, 67–69]. The splitting andmerging operations are detailed

in Algorithm 2 and Algorithm 3. The complete Online Thinning

algorithm is summarized in Algorithm 4.

Algorithm 2 Grow tree

1: Input: Node j with virtual children nodes k and ℓ

2: Update Jt+1 = Jt
⋃
{k, ℓ}\{j}

3: Create new virtual children: k1,k2 for new leaf node k , and
ℓ1, ℓ2 for new leaf node ℓ

4: Let v
(1)

i,t be the first column of Vi,t , i ∈ {k, ℓ}

5: Initialize virtual nodes k1,k2, ℓ1 and ℓ2:
for i ∈ {k, ℓ}

µi1,t+1 = µi,t +

√
λ
(1)

i,tv
(1)

i,t /2, µi2,t+1 = µi,t −

√
λ
(1)

i,tv
(1)

i,t /2

Vi1,t+1 = Vi,t , Vi2,t+1 = Vi,t

λ
(1)

i1,t+1
= λ

(1)

i,t /2, λ
(1)

i2,t+1
= λ

(1)

i,t /2

λ
(m)

i1,t+1
= λ

(m)

j,t , λ
(m)

i2,t+1
= λ

(m)

j,t , m = 2, . . . , r

qi1,t+1 = qj,t /2, qi2,t+1 = qj,t /2

Algorithm 3 Prune tree

1: Input: Node j with children nodes j1 and j2 to be merged

2: Delete all four virtual children nodes of j1 and j2
3: Update Jt+1 = Jt

⋃
{j}\{j1, j2}

4: Define j1, j2 as the virtual children nodes of the new leaf node

j

Algorithm 4 Online Thinning with Mini-Batch Updates

1: Input: error tolerance tol > 0, threshold τ > 0, forgetting

factor α ∈ (0, 1)

2: Initialize: tree structure, set initial error ϵ1 = 0

3: for t = 1, 2, . . . do
4: Receive new data Xt ∈ Rp×Nt

5: for i = 1, 2, . . . ,Nt do
6: Let xt,i be the i

th
column of Xt

7: For all j ∈ Jt , compute likelihood using Eq. (2)

8: Compute anomalousness score st (xt,i ) using Eq. (3)
9: Assign xt,i to leaf j∗t , argmaxj ∈Jt {pj,t (xt,i )}
10: Compute the likelihood of xt,i under j

∗
’s two virtual

children nodes, and also assign xt,i to the virtual child with

higher likelihood

11: end for
12: Update ϵt+1 = αϵt +

1

Nt

∑Nt
i=1 st (xt,i )

13: for all nodes j in the tree do
14: Ij,t , {i : xt,i assigned to jth node or its children}

15: if Ij,t is not empty then
16: Denote all data assigned to node j or its children as

X j,t = [x1, . . . ,xnj,t ]
17: Compute (9), (4), (5), (6), (7), (8)

18: Update Vj,t by calling Algorithm 1

19: if Ineq. (10) and (11) then call Algorithm 2

20: else if Ineq. (12) and (13) then call Algorithm 3

21: end if
22: else update qj,t+1 = αqj,t
23: end if
24: end for
25: Xt = {xt,i : st (xt,i ) > τ }
26: end for
27: Output: sequence of thinned data X1, . . . ,XT

4 SYNTHETIC DATA EXPERIMENTS
This section compares the Online Thinning approach based on

tracking a dynamic low-rank GMM with (a) a classical full-rank

batch (static) GMM [51, 52], (b) a full-rank online GMM estimation

algorithm [61], and (c) MMLE-MFA [71], a low-rank batch (static)

GMM estimation algorithm. The classical batch GMM and online

GMM algorithms do not have the low-rank structure exploited

by the Online Thinning algorithm and MMLE-MFA. While MMLE-

MFA incorporates the low-rank model, the algorithm is batch-based

and does not evolve over time.

For these experiments, the data is generated as follows: The

ambient dimension is p = 100. We first generate points in Rp in a

union of three (shifted) subspaces of dimension ten; in which 95% of

the points lie in the union of the first two subspaces. The other 5%

of the points lie in a third subspace that is orthogonal to the other

two. All three subspaces have shifts close to 0. We then add white

Gaussian noise with standard deviation σ = 0.01 to these points

to generate our observations. The two subspaces where the 95% of

observations come from are dynamic, where the subspaces rotate at

a speed δ ≥ 0. For j = 1, 2, we haveVj,t+1 = Vj,t+δ
B

∥B ∥F
Vj,t ,where

B is a p × p skew-symmetric matrix. Denote the set of xt ’s coming
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from each of the three subspaces as Xj , j = 1, 2, 3, respectively. The

goal is to identify the 5% of the observations that come from X3.

The experiment streams in nine thousand observations in total.

For Online Thinning and the full-rank online GMM, an initial model

is estimated using the first one thousand samples, and the mod-

els are then updated in an online fashion for the remaining eight

thousand samples. For the full-rank batch GMM algorithm and the

MMLE-MFA algorithm, we estimate a GMM model on the entire

nine thousand data points (after all samples come in) at once. The

anomalousness score is calculated as the negative log-likelihood of

each data point according to the estimated model.

Fig. 5 compares the detection accuracy (in ROC curves) of Online

Thinning and the two comparator algorithms in two settings, where

in 5a, the true subspaces used to generate the data are kept static

(δ = 0) throughout the experiment, and in 5b, the true subspaces

rotate at the rate of δ = 2 × 10
−2

at each time step. Each plotted

experiment is averaged over one hundred random realizations. As

seen in the plots, all four algorithms perform well when the mixture

components are static, while Online Thinning outperforms the the

other three algorithms when the subspaces change over time.

The average time used by the four algorithms to process the nine

thousand samples is (a) Online Thinning: 2.70s, (b) full-rank batch

GMM: 4.18s, (c) full-rank online GMM: 16.38s, and (d) MMLE-MFA:

62.64s.
1
Online Thinning is significantly faster than the other three

algorithms. The computation time is recorded with single-threaded

implementations in MATLAB (2015a) with a 2.2GHz CPU.

The performance gap can be explained by the underlying models

of the four algorithms. Both the full-rank batch GMM and full-rank

online GMM algorithms rely on full-rank GMM models, which

make estimating the covariance matrices difficult without a large

number of observations. Furthermore, the MMLE-MFA and the

batch full-rank GMM algorithm rely on static models, which intro-

duce bias when the environment is dynamic. On the other hand,

Online Thinning is based on a dynamic low-rank GMM model,

and thus faces a much less ill-posed problem by having a union

of subspace assumption (which significantly reduces the number

of unknowns in the covariance matrices). Also, Online Thinning

focuses on the most recent samples by weighing down the past

samples, and can quickly adapt to the changes in the subspaces.

In this experiment, the Online Thinning algorithm also correctly

estimates the number of mixture components as two, while for the

other three algorithms, the correct number of mixture components

is given a priori. To further demonstrate the ability to estimate the

number of mixture components by Online Thinning, we generate

data with varying number of mixture components, and record the

estimated number of components by the Online Thinning algorithm.

In this experiment, we generate three segments with 10
4
samples

each (p = 100). For the first and third segment, the non-anomalous

data (95% of samples) come from two different rank-ten mixture

components, while in the second segment, the non-anomalous

data comes from four different rank-ten mixture components. The

mixture components stay static within each segment. Fig. 6 shows

the number of mixture components estimated by Online Thinning

1
MMLE-MFA is originally developed for compressive sensing where our problem

can be seen as a special case where the sensing matrices are identity matrices. We

modified the code for MMLE-MFA to reduce computation time involved with the

identity sensing matrices.
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Figure 5: Comparison between Online Thinning using a dy-
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with three different α values. The vertical red dash lines indicate

when the number of non-anomalous mixture components change.

As seen, for all three values of α , the Online Learning algorithm

quickly adapts to the correct number of components after both

changes. The smaller α is, the faster the algorithms adapts after a

sudden change.

5 WAMI EXPERIMENTS
This experiment compares Online Thinning with the SUN (Saliency

Using Natural statistics) algorithm proposed by Zhang et al in [72].

We do not use the other GMM-based algorithms discussed in Sec-

tion 4 due to (a) the MMLE-MFA and full-rank batch GMM are not

online algorithms, which means they are unsuitable for streaming

video applications, and (b) though full-rank online GMM is an on-

line algorithm, the high computational complexity does not allow

for video processing in realistic settings. The SUN algorithm, on the
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(a) Original, frame 50 (b) Original, frame 100

(c) 5% most salient patches, frame
50

(d) 5% most salient patches, frame
100

Figure 7: Data thinning result using Online Thinning and
SUN algorithms on the surveillance video at frames 50 and
100. The first row shows the original video, and the sec-
ond row shows the data thinning results. In the results,
green patches are flagged by both methods, blue patches are
only flagged by Online Thinning, and red patches are only
flagged by SUN.

other hand, is representative of the state-of-the-art visual saliency

detection algorithms [17], provides a general framework for many

models, performs as well as or better than previous models, and is

computationally efficient [72]. Thus the SUN algorithm is a better

algorithm for real-life video applications.

We perform this comparison on a real surveillance video cap-

turing an empty field near a highway. In the video, a car is parked

on the lot, and two people can be seen walking in and out of the

scene on the field. We use this video because it is clear that the car

and the people are most salient in the scene. The original video

can be found at https://youtu.be/mX1TtGdGFMU. For the Online

Thinning algorithm, we use SIFT (scale-invariant feature transform)

features [47] of frame t as our observation Xt at time t . Specifically,
we use the package from [64] to compute the dense SIFT features

(i.e., SIFT features computed over a pre-set grid of points on each

frame) as features. Each frame of the video is of size 960 × 540, and

the grid is placed so that one SIFT feature is computed for each

25 × 25 patch. Each frame have roughly eight hundred SIFT feature

vectors. The dimension of each SIFT feature vector is 128.

Fig. 7 shows the result of Online Thinning and the SUN algo-

rithms on this surveillance video at frames 50 and 100. Figures 7a

and 7b show the original frames, while in 7c and 7d, we flag the top

5% patcheswith the highest anomalousness or saliency scores by the

Online Thinning and SUN algorithms. In the results, green patches

are flagged by both methods, blue patches are only flagged by On-

line Thinning, and red patches are only flagged by SUN. Note that

in both frames, the people in the scene are mostly labeled by blue,

i.e., they are only flagged by Online Thinning. The Online Thinning
outperforms the SUN algorithm by more consistently flagging small

rare patches such as the people; this is in part due to the adaptivity

of Online Thinning to dynamic environments. The result video can

be found at https://www.youtube.com/watch?v=DyLJThawgi0.

6 CONCLUSION
This paper proposed an online data thinning method for high-

dimensional data with changing environment. At the heart of the

proposed algorithm is a union of subspaces tracking algorithm,

which allows for fast and accurate data thinning in a variety of

applications.

The core idea of the proposed approach is to track a Gaussian

mixture model whose covariance matrices each are dominated by

a low-rank component. Under this model, most observations are

concentrated in a union of subspaces, a model growing in popu-

larity in image, video, and text analysis because of its flexibility

and robustness to over-fittings. Unlike traditional GMMs, the low-

rank structure proposed here mitigates the curse of dimensionality

and facilitates efficient tracking in dynamic environments. Fur-

thermore, by leveraging the recent advances in subspace tracking

and subspace clustering techniques, the proposed method is able

to accurately estimate the mixture density without adding a sig-

nificant computational burden. Another important feature of the

proposed method is the ability to track an arbitrary number of mix-

ture components. The adoption of a tree-like hierarchical structure

for the union of subspaces model allows the method to adaptively

choose the number of subspaces needed at each time stamp, and

thus greatly improves the flexibility of the method and accuracy

when tracking highly dynamic densities.
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