
Evaluating Improvements to the Shapelet Transform

Aaron Bostrom, Anthony Bagnall and Jason Lines

University of East Anglia
Norwich, Norfolk
United Kingdom

ABSTRACT
The Shapelet tree algorithm was proposed in 2009 as a novel
way to find phase independent subsequences which could be
used for time series classification. The shapelet discovery
algorithm is O(n2m4), where n is the number of cases, and
m is the length of the series. Several methods have sought to
increase the speed of finding shapelets. The ShapeletTrans-
form reduces the finding to a single pass, and FastShapelets
smooths and reduces the series lengths through PAA and
SAX. However neither of these techniques can enumerate
all shapelets on the largest of the datasets present in the
UCR repository. We first evaluate whether the FastShapelet
algorithm is better as a transform, and secondly provide a
contract classifier for the shapelet transform, by calculating
the number of fundamental operations we can estimate the
run time of the algorithm, and sample the data to fulfil
this contract. We found that whilst the FastShapeletTrans-
form does drastically reduce the operation count of finding
shapelets it is not significantly better than FastShapelets,
nor can it compete with the ShapeletTransform. The fac-
tory method for sampling the data is competitive with the
ShapeletTransform and in some cases we see minor improve-
ments despite being much faster.

1. INTRODUCTION
Time series classification (TSC) is a subset of the general clas-
sification problem. The main difference is that the attributes
are ordered temporally, and the ordering of values within
an instance is fundamental. For a set of n time series, T
= {T1, T2, ..., Tn} each time series has m ordered real-valued
observations Ti = {ti1, ti2, ..., tim} and a class value ci.

A technique that was recently proposed was Shapelets [1].
Shapelets were proposed as a way of identifying the best
subsequence within a dataset, and use that to best split the
data. The advantage shapelets have over more traditional ap-
proaches is that they find phase independent features which
measures such as dynamic time warping (DTW) or Euclidean
distance (ED) would fail to find. The original shapelet al-

gorithm embedded the classification process in a decision
tree using information gain (IG) to assess the quality of each
shapelet [1]. The shapelet transform (ST) was proposed in
2012 and since then has been shown through extensive ex-
perimental evidence to be the best shapelet based approach
to TSC [2, 3]. More recently we have made a number of
improvements to the shapelet transform, these include more
effective early abandons in the distance calculations, binary
representation of class values to improve classification accu-
racy on multi class problems and leverage entropy pruning
speed ups [4].

A number of different techniques have been developed from
the original shapelet algorithm including Fast Shapelets and
Learn Shapelets [5, 6]. The shapelet approach has not only
been applied in the classification domain, shapelets have
been used across machine learning. Examples of shapelets in
clustering [7, 8, 9, 10] and in early classification [11, 12, 13,
14].

Shapelets are unique in TSC because they find phase inde-
pendent features, the best shapelets are interpretable and
can map back onto the original series to give insight into
a problem. Shapelets have been applied to a number of
different domains these include: leaf outlines [1, 15], gesture
recognition [16], gait recognition [17] , classifying mutant
worms [7], identifying electric devices and classifying hand
outlines [18, 19].

Our aim in this paper is to present two different techniques
to speed up the finding of shapelets. We propose the Fast-
Shapelets transform, which is an adaptation of the Fast
Shapelet tree, and the factory transform which uses a run
time condition to sample the data.

2. RELATED WORK AND BACKGROUND

2.1 Shapelet Transform
The shapelet transform involves a single scan of the data
enumerating all possible shapelets, from all possible start
positions, and all possible lengths between 3 and m. Each
shapelet is evaluated on all the other time series. The quality
of a shapelet is determined by calculating the distance from
a series to a shapelet. Using a sliding window, calculate the
Euclidean distance for the shapelet against a series, attempt-
ing to find the minimum distance match. Euclidean distance

is defined as:

dist(A,B) =

√√√√ m∑
i=1

(ai − bi)2 (1)

We define the sliding window function for calculating the
distance between a shapelet and a series as, where W is the
set of all subsequences which are the same length as S in T :

sDist(S, T) = minw∈W (dist(S,w)) (2)

With the distance values for each series and the shapelet
we use information gain to calculate how best it splits the
data. A number of alternative distance measures have been
assessed, however there was not a significant increase in
quality for the other measures, so for simplicity we have
opted to continue using Information Gain [20].

Shapelet based classification for ST involves finding the k
best shapelets. For each shapelet, we calculate the distance
between the shapelet and each series, creating k features for
each series, this is shown in algoritgm 1. The main advantage
of using transformed data is that we can use any classifier,
and that we do not need to search for shapelets at each node
of the tree.

The main issue with shapelets is the time complexity. Enu-
merating through the possible space of shapelets and eval-
uating them is O(n2m4). Several heuristic techniques have
been made to speed up this search and were described in
[1, 21, 5, 20, 4]. The most recent improvements to the
shapelet algorithm were presented in [4]. We demonstrated
the effectiveness of a binary representation of class values
on multi-class problems. Our research has been focussed
on improving findDistances and assessCandidate functions
within the shapelet transform, shown in algorithm 1. Our
new aim is to consider alternative finding functions, where
we use alternate generateCandidates functions in algorithm
1.

2.2 Shapelet Algorithm
2.3 Fast Shapelets
Fast shapelets (FS) were proposed in 2013 [5]. The algorithm
is a refinement of the original shapelet selection algorithm
and employs a number of techniques to speed up the finding
and pruning of shapelet candidates [15]. The major change
made to the Shapelet algorthm is the introduction of sym-
bolic aggregate approximation (SAX) [22, 23] and random
projection.

The first stage of the shapelet finding process is to create
a List of SAX words [22, 23]. The basic concept of SAX
is a two stage process, firstly using piece-wise aggregate
approximation (PAA), to transform a time series into a
number of smaller averaged sections, reducing the length
and smoothing the series. With a given alphabet size of 4
the aggregate series is discretized into a long sequence of
characters. The sequence of characters are evaluated similarly
to shapelets, where certain letters within a word are masked
(random projection) and these words are evaluated based on
both the number of occurrences, and on whether they only

Algorithm 1 ShapeletTransform(T, min, max, k)

Parameters: A list of time series T, min and max length
shapelet to search for and k,the maximum number of
shapelets to find)

Return: A list of k Shapelets
1: numClasses← getClasses(T)
2: kShapeletsMap← ∅
3: prop← k/numClasses
4: for all Ti in T do
5: shapelets← ∅
6: for l← min to max do
7: Wi,l ← generateCandidates(T, i, l)
8: for all subseries S in Wi,l do
9: DS ← findDistances(S,T)

10: quality ← assessCandidate(S,DS)
11: shapelets.add(S, quality)
12: sortByQuality(shapelets)
13: removeSelfSimilar(shapelets)
14: kShapelets← kShapeletsMap.get(T.class)
15: kShapelets← merge(prop, kShapelets, shapelets)
16: kShapeletsMap.add(kShapelets, T.class)
17: return kShapeletsMap.asList()

Algorithm 2 generateCandidates(T, i, l)

Parameters: A list of time series T, i and l, the times series
to search and the length to consider.

1: shapelets← ∅
2: for pos← 0 to m− l + 1 do
3: shapelets ∪ T l

i,pos

4: return shapelets

occur in one class. If a word occurs in one class often and
not in another, it should be a good discriminatory feature,
as opposed to a feature which occurs often in both, which is
likely to be a poor feature. The best words are then converted
back into there original time series, and evaluated in the same
way as the other shapelet approaches, with information gain.
The best shapelet forms the splitting rule in the decision tree.
This process recursively divides the data into subsets finding
the best shapelets until the data is sufficiently subdivided.

3. FAST SHAPELET TRANSFORM
In previous work the Shapelet transform significantly out
performs the shapelet tree [2]. So our hypothesis was: “is the
classification model of Fast Shapelets limiting its accuracy?”.
Our modification to the fast shapelet algorithm is minimal.
We wanted to maintain as much similarity to the original
approach whilst only removing the decision tree. We iden-
tified the search function in algorithm 1 to ensure the Fast
Shapelet search works within our framework, and can benefit
from all the improvements we have implemented. We con-
sider the fast shapelets in essence a heuristic search, rather
than searching the entire space of possibilities, we use the
FS algorithm to reduce the number shapelets that are fully
evaluated. Instead of testing and calculating the orderline
for every shapelet candidate, we use the collision table to
prune a number of shapelets because as the original authors
pointed out the best shapelets are near the top of this list.

The fast shapelets algorithm considers the entire time se-
ries dataset and evaluates all the lengths when scoring the

Algorithm 3 generateCandidatesFS(T,i ,l)

Parameters: A list of time series T, i and l and the times
series to search and the length to consider.

1: shapelets← ∅
2: SAXList =FindSAXWords(T, l)
3: RandomProjection(SAXList)
4: ScoreList =ScoreAllSAX(SAXList)
5: shapelets =FindTopSAXFromSeries(ScoreList,

SAXList, i)
6: return shapelets

SAX representations. To ensure parity we also find all the
shapelets of a particular length, but on each subsequent call
only return the best shapelets from within the given series.
This ensures we can evaluate them in the series by series
framework we have built, and so that we do not alter the
finding technique as to make them incomparable.

4. FACTORY TRANSFORM
As the size and lengths of the datasets increase using the
shapelet transform in reasonable time frames becomes increas-
ingly difficult. This was also the case for the Fast Shapelet
transform, these timing improvements are discussed in sec-
tion 6. We wanted to evaluate simple sampling techniques
and skipping parameters before exploring complex search al-
gorithms. In previous work we were forced to heavily sample
the larger datasets in the UCR repository as the number of
instances and the length of the series meant that a number
of them would take a matter of weeks or months to complete
[3]. To better estimate a datasets runtime, we define the
opCount formula (equation 3), in this definition we have also
included the length and position skipping parameters (p and
q. These parameters are very simple. However, they allow us
to avoid considering all enumerations of the shapelets. For
example with both q and p equal to 2, every other shapelet
candidate is considered, effectively halving the amount of
shapelets considered.

By defining the fundamental operation as the addition within
the Euclidean distance function, we can calculate the run
time complexity function of any dataset. This formula also
demonstrates the big-O bounding of the algorithm as we
defined earlier as O(n2m4).

The min and max are assumed to be 3 and m.

We denote the position skipping parameter as p and the
length skipping parameter as q.

We define the size of the set of possible lengths that exist
with length skipping as s = (m− 3)/q The possible lengths
are

L =< l1, ..., ls >

where

li = ((i− 1)q) + 3

We define the opCount formula as:

opCount =

|L|∑
i=1

⌈
m− li + 1

p

⌉
(m− li + 1)(li)(n− 1)(n) (3)

We expand the summation to:

(m − 3)(n2 − n)(m3 + 7m2 − m(q2 − 18q + 27) + 5q2 − 24q + 27)

12pq
(4)

This formula will be useful in optimising the skipping param-
eters. For the case of just sampling the original data without
any skipping we can set q and p equal to 1. The formula is
simplified to:

opCount =
(m− 3)(n2 − n)(m3 + 7m2 − 10m + 8)

12
(5)

Rearranging this formula making n the subject, means for a
given operation count we can calculate the size of the dataset.

n ≈

√
12opCount

(m− 3)(m3 + 7m2 − 10m + 8)
(6)

Equation 6 is the re-arranged form, so that given a constraint
on the number of operations the shapelet transform is allowed
to perform, we can calculate the new size of the dataset. We
add one constraint to the sampling, we set a threshold of at
least 25 cases of the least represented class.

If the proportion of n is less than this threshold then the
data is being over sampled, and the length and position
skipping parameters may be required to fulfil the operation
limit. Often if the data is sampled and is not able to run
in the allotted time either there are a significant number of
classes, or the series are very long. To reduce the work done
we introduce the skipping parameters, by fixing them to the
same value we can solve the opCount equation for the new
dataset size, and we calculate the new skipping value.

We propose a modification to the existing shapelet transform
algorithm, where we define a contract algorithm to pre-
process the training data to tune the parameters n, q and
p. Reducing the operation count to below the allotted run
time.

Algorithm 4 calculateNPQ(T, opThreshold)

Parameters: A list of time series T, opThreshold is the
threshold of operations.

1: q = 1, p = 1
2: opCount = calculateOpCount(n,m,q,p)
3: if opCount > opThreshold then
4: sampleProp= calculateProportion(n,m,opThreshold)
5: leastRepProp = calculateLeastRep(T)
6: if sampleProp < leastRepProp then
7: sampleProp = leastRepProp
8: n = n ∗ sampleProp
9: q, p = calculateQP(n, m, opThreshold)

10: return n, p, q

With this algorithm we create the Factory Transform, where
given a contract op threshold which is directly tied to run time
we can specify how long we want our shapelet transform to
spend calculating the optimal shapelets. Where we randomly
prune instances from the dataset whilst maintaining the
original distribution, and skip shapelets of different positions
and lengths equally throughout the full search.

5. DATA AND EXPERIMENTAL DESIGN
5.1 Datasets
The 85 datasets are described in detail on the website [24].
The collection is varied in terms of data characteristics: the
length of the series ranges from 24 (ItalyPowerDemand) to
2709 (HandOutlines); train set sizes vary from 16 to 8926;
and the number of classes is between 2 and 60. The data are
from a wide range of domains, with an over representation of
image outline classification problems (29 problems). Other
categories are sensor readings (16), motion capture (14), food
spectrographs (7), ECG measurements (7), electric device
profiles (6) and simulated data (6). We include a further
dataset, HeartbeatBIDMC, to demonstrate the scalability of
the shapelet factory. HeartbeatBIDMC is an ECG data set
archived on physionet that has been used in TSC research [25,
26] to assess scalability. The problem involves identifying 15
individuals with heart conditions based on their heartbeat.
The train series are length 3750 and the test data length
1125. We truncate the test data to length 3750. There are
600 train cases and 600 test cases.

5.2 Experimental Design
To thoroughly test and improve the shapelet algorithm, we
have designed and built upon the WEKA Java framework.
For shapelets we have created a number of optimisations,
and implemented some of the other work in the literature.
This includes, but is not limited to, the work presented in [15,
21, 4, 20, 27]. These optimisations all reduce the amount of
fundamental operations through various heuristics. To assess
the quality of these optimisations and reduce the number of
calculations we perform, we developed the operation count
measure (opCount). This measure is essentially the number
of addition operations in the Euclidean distance between
two subsequences. Early abandon, entropy pruning and
the plethora of other optimisations all reduce this count,
however none of these techniques reduce the worst case time
complexity.

We have designed a series of experiments to assess both
the run time performance and the accuracy. We wanted to
identify how much of a stand alone reduction the FS search
provides in comparison to a full search. We also wanted
to show the amount of work the current state-of-the-art
heuristics reduce operation count by, and then finally how
much work we can reduce by combining all approaches. All
of the experiments we outline operate under the experimental
standard we set in [3]. We perform 100 re-samples where
possible, some of the larger datasets were not possible to
run in a timely fashion (greater than 7 days runtime). This
illustrates our point on a greater need for more drastic dataset
reduction in subsequent experiments.

We measure four approaches to the shapelet speed up these
are; Full Shapelet search without optimisations, Full Shapelet

search with optimisations, Fast Shapelet search without op-
timisations, and Fast Shapelet search with optimisations.
Time taken for the full shapelet search without optimisations
can be calculated, and is our reference point for how much
work we have avoided.

Our first set of experiments were designed to assess the
speed improvement of the fast shapelet search. We also
wanted to test the search with and without any pruning
to test its individual contribution. In Table 3 we present
the opCounts for the four approaches, and the amount of
work they performed with respect to the full transform, as a
percentage.

We also assess the effect the Fast Shapelet search had on
accuracy, and whether the Fast Shapelet Transform was
better than the original algorithm (FS) and whether it was
as good as the shapelet transform. In Table 6.1 we present
the accuracies of a number of baseline classifiers; 1 nearest
neighbour with dynamic time warping setting the window
through cross validation, rotation forest and the accuracies
for the FastTransform, FastShapelets (FS) and the Shapelet
Transform (ST).

The second set of experiments we perform are for the Factory
transform. We proposed the factory transform in section 4
as a way of finding shapelets in a fixed time by dynamically
resizing large datasets, as well as skipping on lengths and
positions when searching for shapelets. The factory transform
calculates the estimated time to create the shapelet transform
and resamples only if this exceeds the threshold, therefore a
large portion of the 85 datasets will not need to be sampled.
We set our time threshold to one day and compare the
factory transforms accuracy with that of the full shapelet
transform. The results are presented in table 4. We present
the parameters that were selected for each dataset by the
estimation function. We also opted to fix q and p to the
same value for simplicity. We present the results for the
HeartBIDMC dataset.

6. RESULTS

6.1 Fast Shapelet Transform vs. Full Shapelet
Transform

Table 6.1 presents the results for the accuracies of the Fast
shapelet transform compared with the shapelet transform,
fast shapelets, rotation forest(RotF) and 1nn-DTW (DTW)
a baseline comparison. In Figure 1 we present the critical
difference diagram for these classifiers. Completing the 100
resamples on the very large datasets for the Fast shapelet
transform, even with its speed increase would have still
required sampling of cases, which is not the purpose of these
experiments, and so we chose not evaluate it on the very
large datasets. The design of our current framework allows us
to very simply enable and disable certain optimisations, for
further analysis using the FactoryTransforms subsampling
for large datasets could be considered to further evaluate the
technique on the large datasets. The results show that the
Fast shapelet transforms is neither significantly better than
FastShapelets, nor significantly worse than DTW, this is a
marked improvement, as the Fast Shapelets is in a separate
clique.

In Table 6.1 we show the operation counts for the four
shapelet approaches, these operations are in the order of mil-
lions. We were unable to present results for all the datasets
with the Shapelet transform as the missing datasets require
some minor sampling to complete in a timely manner, and
this would prove an unfair comparison. The fast shapelet
search reduces on average the amount of operations by 65%
and the speed up techniques for distance calculations reduce
the average amount of operations by 60%. The combination
of both search and speedup techniques reduces the opcount
on average by 95%, this highlights both the importance of
the current research into distance early abandon heuristics,
as well as into alternative search techniques for shapelets.

Figure 1: Critical difference diagram for 5 classi-
fiers, showing the effectiveness of the FastTransform
against Shapelet Transform, Fast Shapelets and 2
benchmark classifiers.

6.2 Factory Tranform vs. Full Shapelet Trans-
form

In Table 4 we show the result for the factory transform com-
pared with the shapelet transform. The factory transform
wins on 32 out of the 42 datasets and comparing both the
classifiers on a Wilcoxon signed rank test and a binomial
test the factory transform is significantly better at the 5%
level. When the shapelet transform was proposed the scala-
bility on larger problems was tackled by a simple method for
setting the min and max lengths of shapelets. This method
drastically reduced the search space for the large problems,
at the expense of accuracy. In subsequent research we’ve
increased the shapelet min and max parameters, to 3 and
m so that we consider the entire problem space, and for the
larger problems a simple sampling technique of 10% has been
sufficient. The Factory Transform proposed is more accurate
on the larger problems than the Shapelet Transform because
the previous sampling required was much more coarse.

The HeartBIDMC dataset was estimated to have a run time,
assuming no optimisations, of 68,000 days. We reduced this
by heavily sampling both train set and skipping parameters,
to calculate a transform in one day. We show the results
for the HeartBIDMC dataset in Table 3 and compare the
FactoryTransform to a plethora of elastic measures [28]. The
size of the dataset and the length of the series meant that

getting either LearnShapelets or FastShapelets to complete
in a timely manner was not possible. In figure 2 we show an
example of two of the shapelets we found for class 1 in the
dataset.

Figure 2: An example of the best two shapelets for
class 1

Table 3: Comparing the FactoryTransform with
other common TSC approaches

Algorithm Accuracy
FactoryTransform 0.972

Euclidean 1NN 0.21
DTW 0.805

WDTW-1NN 0.818
DDTW-Rn-1NN 0.806
WDDTW-1NN 0.79

LCSS-1NN 0.8817
MSM-1NN 0.915
TWE-1NN 0.905
ERP-1NN 0.833

EE 0.835

7. CONCLUSIONS AND FUTURE WORK
Our research aimed to evaluate two separate techniques for
reducing the average runtime of the shapelet search algorithm.
The first technique we defined was an extension to the Fast
Shapelets algorithm, originally proposed in [5]. The second
technique we defined was the Factory transform, before we
start considering more complex techniques for reducing the
run time complexity of shapelets, we wanted to the effective-
ness of more simplistic approaches; these included sampling
of cases, and skipping length and position parameters when
finding shapelet candidates.

Firstly we evaluated whether we could improve the Fast
Shapelets algorithm, leveraging an alternative search algo-
rithm for finding shapelets but utilising the transform to
enable a broader range of classifiers. This research had two
aims, to show that the Fast Shapelet transform was supe-
rior to Fast shapelets, which was not the case. Secondly
we wanted to show that it was comparable to the DTW
benchmark whilst being faster than the Shapelet transform,
this was shown in figure 1 and the difference in operation
counts from 60% work reduction down to a 95% when paired
with the Fast shapelet search.

Secondly we evaluated the more simplistic speed up technique
of dynamically sampling cases on large datasets. We set the
time limit of 1 day for our contract on the UCR datasets

Table 1: Comparison of Fast Transforms accuracy, average accuracy of 100 fold resampling
Datasets FastTransform ST FS RotF DTW

ArrowHead 0.808 0.851 0.675 0.789 0.871
Beef 0.682 0.736 0.502 0.819 0.61

BeetleFly 0.964 0.875 0.796 0.791 0.85
BirdChicken 0.947 0.927 0.862 0.747 0.853

Car 0.807 0.902 0.736 0.788 0.75
CBF 0.945 0.986 0.924 0.898 0.545

ChlorineConcentration 0.747 0.682 0.566 0.846 0.69
Coffee 0.991 0.995 0.917 0.995 0.982

DiatomSizeReduction 0.933 0.911 0.873 0.881 0.92
DistalPhalanxOutlineAgeGroup 0.809 0.819 0.745 0.807 0.699

DistalPhalanxOutlineCorrect 0.826 0.829 0.78 0.812 0.759
DistalPhalanxTW 0.665 0.69 0.623 0.692 0.622

ECG200 0.846 0.84 0.806 0.851 0.855
ECG5000 0.94 0.943 0.922 0.942 0.926

ECGFiveDays 0.741 0.955 0.986 0.86 0.685
FaceAll 0.862 0.968 0.772 0.905 0.936

FaceFour 0.719 0.794 0.869 0.853 0.732
FacesUCR 0.73 0.909 0.701 0.784 0.873
FiftyWords 0.685 0.713 0.512 0.675 0.763

Fish 0.691 0.974 0.742 0.859 0.91
GunPoint 0.885 0.999 0.93 0.924 0.973
Herring 0.584 0.653 0.558 0.608 0.505

InsectWingbeatSound 0.618 0.617 0.488 0.633 0.531
ItalyPowerDemand 0.96 0.953 0.909 0.967 0.956

Lightning7 0.655 0.724 0.101 0.701 0.616
Meat 0.872 0.966 0.924 0.994 0.821

MedicalImages 0.732 0.691 0.609 0.756 0.668
MiddlePhalanxOutlineAgeGroup 0.72 0.694 0.613 0.669 0.591

MiddlePhalanxOutlineCorrect 0.78 0.815 0.716 0.82 0.781
MiddlePhalanxTW 0.579 0.579 0.519 0.568 0.507

MoteStrain 0.837 0.882 0.793 0.859 0.756
OliveOil 0.701 0.881 0.765 0.889 0.784

Plane 0.97 1.0 0.97 0.986 0.994
ProximalPhalanxOutlineAgeGroup 0.839 0.841 0.797 0.847 0.781

ProximalPhalanxOutlineCorrect 0.802 0.881 0.797 0.875 0.857
ProximalPhalanxTW 0.782 0.803 0.716 0.808 0.75

ShapeletSim 0.554 0.934 1.0 0.488 0.662
SonyAIBORobotSurface1 0.881 0.888 0.918 0.814 0.745
SonyAIBORobotSurface2 0.863 0.924 0.849 0.846 0.852

Strawberry 0.907 0.968 0.917 0.974 0.959
SwedishLeaf 0.842 0.939 0.758 0.884 0.906

Symbols 0.862 0.862 0.908 0.842 0.935
SyntheticControl 0.962 0.987 0.92 0.967 0.563

ToeSegmentation1 0.606 0.954 0.904 0.578 0.702
ToeSegmentation2 0.764 0.947 0.873 0.646 0.804

Trace 0.752 1.0 0.998 0.932 0.995
TwoLeadECG 0.678 0.984 0.92 0.928 0.94
TwoPatterns 0.92 0.952 0.696 0.928 0.997

Wafer 0.991 1.0 0.981 0.995 0.995
Wine 0.58 0.926 0.794 0.919 0.85

WordSynonyms 0.59 0.582 0.461 0.586 0.728
Yoga 0.821 0.823 0.721 0.854 0.835

Datasets FastTransform FullTransform
Wins 12 40

Datasets FastTransform FastShapelets
Wins 36 16

Table 2: opCounts(in millions) of four different versions of the shapelet transform on 47 datasets
Dataset Fast Full SpeedUps Combined

ArrowHead 137405.000 423196.000 127217.000 46764.750
Beef 1132100.000 3567380.000 1016010.000 415402.000

BeetleFly 1333850.000 2192860.000 1221600.000 860176.000
BirdChicken 647070.000 2192860.000 883095.000 330075.000

Car 2453470.000 32921900.000 880795.000
CBF 17522.927 20033.384 14534.000 12455.808

ChlorineConcentration 3680240.000 14087100.000 1954840.000
Coffee 99638.013 427243.000 38227.000 13061.743

DiatomSizeReduction 20391.452 286551.000 25235.000 2562.230
DistalPhalanxOutlineAgeGroup 44971.005 569421.000 106319.000 11741.437

DistalPhalanxOutlineCorrect 138160.000 1282270.000 279203.000 41800.481
DistalPhalanxTW 45080.854 569421.000 101613.000 1075.419

ECG200 32243.889 72758.961 32585.000 1671.359
ECG5000 2351580.000 8203050.000 3998320.000 129349.000

ECGFiveDays 6912.204 14825.684 4838.000 219.910
FaceAll 6343870.000 7903390.000 5466050.000 409327.000

FaceFour 533955.000 698003.000 394843.000 26959.794
FacesUCR 855320.000 1004840.000 673159.000 55698.130
GunPoint 21388.225 105975.000 38627.000 972.567
Herring 2481450.000 23267400.000 48211.737

InsectWingbeatSound 6519320.000 17505600.000 380356.000
ItalyPowerDemand 65.203 136.489 54.000 2.677

Lightning7 1984710.000 4219010.000 2935880.000 136956.000
Meat 781272.000 11987500.000 9179.359

MedicalImages 450407.000 1202180.000 641756.000 30612.930
MiddlePhalanxOutlineAgeGroup 30638.186 569421.000 87209.000 676.306

MiddlePhalanxOutlineCorrect 67418.459 1282270.000 206842.000 1512.536
MiddlePhalanxTW 31195.745 566573.000 89467.000 673.167

MoteStrain 1034.774 1644.874 950.000 60.285
OliveOil 173962.000 7706080.000 70298.000 456.460

Plane 157276.000 401574.000 182699.000 7208.427
ProximalPhalanxOutlineAgeGroup 21829.624 569421.000 77454.000 332.152

ProximalPhalanxTW 21373.217 569421.000 78038.000 421.790
ShapeletSim 1672210.000 1994760.000 1355260.000 129571.000

SonyAIBORobotSurface1 664.006 799.063 317.000 25.187
SonyAIBORobotSurface2 984.563 1101.050 618.000 55.713

Strawberry 6855060.000 96915700.000 118914.000
SwedishLeaf 1683130.000 5745210.000 2235150.000 75636.194

Symbols 216693.000 1266960.000 762049.000 14815.894
SyntheticControl 85263.579 102522.000 78777.000 6203.079

ToeSegmentation1 510802.000 776099.000 470739.000 30078.875
ToeSegmentation2 750774.000 1469900.000 813917.000 47968.920

Trace 1387840.000 4785000.000 3031780.000 104463.000
TwoLeadECG 575.925 1990.827 404.000 12.442
TwoPatterns 14450300.000 23003900.000 1000580.000

Wine 24924.705 810711.000 18938.000 80.178
WordSynonyms 13696600.000 31906000.000 870405.000

Fast SpeedUps Combined
0.32 0.30 0.11
0.32 0.28 0.12
0.61 0.56 0.39
0.30 0.40 0.15
0.07 0.03
0.87 0.73 0.62
0.26 0.14
0.23 0.09 0.03
0.07 0.09 0.01
0.08 0.19 0.02
0.11 0.22 0.03
0.08 0.18 0.01
0.44 0.45 0.02
0.29 0.49 0.02
0.47 0.33 0.01
0.80 0.69 0.05
0.76 0.57 0.04
0.85 0.67 0.06
0.20 0.36 0.01
0.11 0.01
0.37 0.02
0.48 0.40 0.02
0.47 0.70 0.03
0.07 0.01
0.37 0.53 0.03
0.05 0.15 0.01
0.05 0.16 0.01
0.06 0.16 0.01
0.63 0.58 0.04
0.02 0.01 0.01
0.39 0.45 0.02
0.04 0.14 0.01
0.04 0.14 0.01
0.84 0.68 0.06
0.83 0.40 0.03
0.89 0.56 0.05
0.07 0.01
0.29 0.39 0.01
0.17 0.60 0.01
0.83 0.77 0.06
0.66 0.61 0.04
0.51 0.55 0.03
0.29 0.63 0.02
0.29 0.20 0.01
0.63 0.04
0.03 0.02 0.01
0.43 0.03

Table 4: Accuracy and paramters for each dataset to run in the allotted time of 1 day, on fold 0
Dataset Factory Full
Adiac 0.7697949 0.76838875
Car 0.8931973 0.90183336

ChlorineConcentration 0.7273969 0.6820625
CinCECGtorso 0.9839249 0.91826814

Computers 0.8065306 0.78464
CricketX 0.78375196 0.7771026
CricketY 0.7629775 0.7621795
CricketZ 0.8024594 0.7977812

Earthquakes 0.7363088 0.7372662
FiftyWords 0.7444271 0.71298903

Fish 0.97463554 0.9741651
FordA 0.94346786 0.96535605
FordB 0.9039557 0.91508645
Ham 0.7689019 0.80838096

HandOutlines 0.9178434 0.9239189
Haptics 0.52988344 0.51185066
Herring 0.6481186 0.65343213

InlineSkate 0.42346933 0.3930182
InsectWingbeatSound 0.6274324 0.61653537

LargeKitchenAppliances 0.93287075 0.9325067
Lightning2 0.5913348 0.65885246

Mallat 0.97428316 0.9723497
Meat 0.9685374 0.96566665

NonInvasiveFatalECGThorax1 0.9122605 0.94676846
NonInvasiveFatalECGThorax2 0.9309809 0.9538524

OSULeaf 0.97529095 0.9340909
Phoneme 0.3389144 0.3290559

RefrigerationDevices 0.79137415 0.7608
ScreenType 0.7057415 0.6761067
ShapesAll 0.9041326 0.8542333

SmallKitchenAppliances 0.80742854 0.80248
StarlightCurves 0.97814846 0.9774138

Strawberry 0.96924984 0.9684324
TwoPatterns 0.9548572 0.9517175

UWaveGestureLibraryAll 0.9553351 0.94207704
UWaveGestureLibraryX 0.81106496 0.8059464
UWaveGestureLibraryY 0.74265033 0.736957
UWaveGestureLibraryZ 0.7518175 0.74676436

WordSynonyms 0.59562725 0.58238244
Worms 0.7434405 0.7194805

WormsTwoClass 0.78293157 0.7787013
Yoga 0.86662924 0.82251

dataset originalN newN q and p
Adiac 390 390 2
Car 60 60 2

ChlorineConcentration 467 411 2
CinCECGtorso 40 40 11

Computers 250 50 3
CricketX 390 390 4
CricketY 390 343 4
CricketZ 390 390 4

Earthquakes 322 138 4
FiftyWords 450 450 4

Fish 175 175 4
FordA 3601 51 2
FordB 3636 51 2
Ham 109 54 1

HandOutlines 1000 69 50
Haptics 155 155 19
Herring 64 64 2

InlineSkate 100 100 35
InsectWingbeatSound 220 220 2

LargeKitchenAppliances 375 75 4
Lightning2 60 60 3

Mallat 55 55 6
Meat 60 60 2

NonInvasiveFatalECGThorax1 1800 1267 70
NonInvasiveFatalECGThorax2 1800 1267 70

OSULeaf 200 200 4
Phoneme 214 214 23

RefrigerationDevices 375 75 4
ScreenType 375 75 4
ShapesAll 600 600 16

SmallKitchenAppliances 375 75 4
StarLightCurves 1000 164 17

Strawberry 613 183 1
TwoPatterns 1000 894 2

UWaveGestureLibraryAll 896 221 20
UWaveGestureLibraryX 896 221 3
UWaveGestureLibraryY 896 221 3
UWaveGestureLibraryZ 896 221 3

WordSynonyms 267 267 2
Worms 181 181 15

WormsTwoClass 181 59 5
Yoga 300 55 1

Full Wins 10
Factory Wins 32

Dataset originalN newN q and p Accuracy
HeartbeatBIDMC 600 375 513 0.971564571

and conducted experiments with 100 resamples. Of the 85
UCR datasets we identified 42 problems that could not fulfil
the contract without sampling. Using the operation count
formula we derived we were able to estimate the amount
of sampling we needed to perform, and with an arbitrary
threshold of 25 cases of the least represented class we sample
to the larger of the two. The factory was shown to be
significantly better than the shapelet transform, and on 32
out of the 42 datasets we had superior accuracy.

The contract classifier and the sampling technique has been
very effective in reducing the dataset size on problems with
only a few number of classes, and with relatively short series.
As the series length increases, and we become unable to
sample the number of cases because of the threshold, we have
to increase the length and position skipping dramatically to
fulfil the contract. This means large portions of the potential
shapelet candidates are missed, some of which could have
formed part of the shapelet set on a full enumeration. The
fast shapelet transform demonstrated the efficacy of searching
smaller portions of the dataset, and our next area of research
will be implementing and assessing a number of local search
techniques to speed up the transform. Our research aims to
improve the shapelet transform, whilst finding shapelets that
exist within the original dataset.

Finally we presented a case study of HeartBIDMC which
presents significant challenges, both due to its size, the length
of the series, and the type of data each class represents. We
were unable to calculate values for other shapelet based ap-
proaches, demonstrating that despite considerable speed ups
that as the size of datasets increases more drastic sampling is
required, and can be effective. We also presented the results
for a number of elastic measures, which were significantly
worse than the shapelet approach.

Acknowledgment
The experiments were carried out on the High Performance
Computing Cluster supported by the Research and Specialist
Computing Support service at the University of East Anglia.
We would particularly like to thank Leo Earl for his help and
forbearance.

8. REFERENCES
[1] L. Ye and E. Keogh, “Time series shapelets,” Proc. 15th

ACM SIGKDD Int. Conf. Knowl. Discov. data Min. -
KDD ’09, p. 947, 2009.

[2] J. Lines, L. Davis, J. Hills, and A. Bagnall, “A shapelet
transform for time series classification,” Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discov. data Min.,
pp. 289–297, 2012.

[3] A. Bagnall, J. Lines, A. Bostrom, and J. Large, “The
Great Time Series Classification Bake Off: An
Experimental Evaluation of Recently Proposed
Algorithms. Extended Version,” eprint
arXiv:1602.01711, p. 19, Jan. 2016.

[4] A. Bostrom and A. Bagnall, “Binary shapelet transform
for multiclass time series classification,” in Int. Conf.
Big Data Anal. Knowl. Discov., vol. 9263, pp. 257–269,
2015.

[5] T. Rakthanmanon and E. Keogh, “Fast shapelets: A
scalable algorithm for discovering time series shapelets,”
in Proc. Thirteen. SIAM Conf. . . . , pp. 668–676, 2013.

[6] J. Grabocka, N. Schilling, M. Wistuba, and
L. Schmidt-Thieme, “Learning Time-series Shapelets,”
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov.
data Min. - KDD ’14, pp. 392–401, 2014.

[7] J. Hills, Mining Time-series Data using Discriminative
Subsequences. PhD thesis, University of East Anglia,
2014.

[8] J. Zakaria, A. Mueen, and E. Keogh, “Clustering time
series using unsupervised-shapelets,” Proc. - IEEE Int.
Conf. Data Mining, ICDM, pp. 785–794, 2012.

[9] J. Zakaria, A. Mueen, E. Keogh, and N. Young,
“Accelerating the discovery of unsupervised-shapelets,”
Data Min. Knowl. Discov., vol. 30, no. 1, pp. 243–281,
2016.

[10] L. Ulanova, N. Begum, and E. Keogh, “Scalable
Clustering of Time Series with U-Shapelets,” Proc.
2015 SIAM Int. Conf. Data Min., pp. 900–908, 2015.

[11] Z. Xing, P. S. Yu, and K. Wang, “Extracting
Interpretable Features for Early Classification on Time
Series,” Siam Int. Conf. Data Min., pp. 247–258, 2011.

[12] Z. Xing, J. Pei, and P. S. Yu, “Early classification on
time series,” Knowl. Inf. Syst., vol. 31, pp. 105–127,
Apr. 2012.

[13] M. P. Griffin and J. R. Moorman, “Toward the early
diagnosis of neonatal sepsis and sepsis-like illness using
novel heart rate analysis.,” Pediatrics, vol. 107,
no. FEBRUARY 2001, pp. 97–104, 2001.

[14] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and
K. Salamatian, “Traffic classification on the fly,” ACM
SIGCOMM Comput. Commun. Rev., vol. 36, no. 2,
pp. 23–26, 2006.

[15] L. Ye and E. Keogh, “Time series shapelets: A novel
technique that allows accurate, interpretable and fast
classification,” Data Min. Knowl. Discov., vol. 22,
no. 1-2, pp. 149–182, 2011.

[16] B. Hartmann and N. Link, “Gesture recognition with
inertial sensors and optimized DTW prototypes,” Conf.
Proc. - IEEE Int. Conf. Syst. Man Cybern.,
pp. 2102–2109, 2010.

[17] S. T. and P. B. Sivakumar, “Human Gait Recognition
and Classification Using Time Series Shapelets,” 2012
Int. Conf. Adv. Comput. Commun., pp. 31–34, Aug.
2012.

[18] J. Lines and A. Bagnall, “Time series classification with
ensembles of elastic distance measures,” Data Min.
Knowl. Discov., vol. 29, pp. 565–592, June 2014.

[19] A. Bagnall, L. Davis, J. Hills, and J. Lines,
“Transformation based ensembles for time series
classification,” Proc. 12th SDM, pp. 890–901, 2012.

[20] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and
A. Bagnall, “Classification of time series by shapelet
transformation,” Data Min. Knowl. Discov., vol. 28,
pp. 851–881, May 2014.

[21] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets,”
Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov.
data Min. - KDD ’11, p. 1154, 2011.

[22] L. Wei, E. Keogh, and A. Xi, “SAXually explicit
images: Finding unusual shapes,” Proc. - IEEE Int.
Conf. Data Mining, ICDM, pp. 711–720, 2006.

[23] J. Lin, E. Keogh, L. Wei, and S. Lonardi,
“Experiencing SAX: a novel symbolic representation of

time series,” Data Min. Knowl. Discov., vol. 15,
pp. 107–144, Apr. 2007.

[24] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall,
A. Mueen, and G. Batista, “The ucr time series
classification archive,” July 2015.
www.cs.ucr.edu/ eamonn/time series data/.

[25] P. Schäfer, “Scalable time series classification,” Data
Min. Knowl. Discov., no. February, 2015.

[26] B. Hu and S. Evans, “Discovering the Intrinsic
Cardinality and Dimensionality of Time Series using
MDL,” Icdm, pp. 1086–1091, 2011.

[27] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista,
B. Westover, Q. Zhu, J. Zakaria, and E. Keogh,
“Searching and mining trillions of time series
subsequences under dynamic time warping,” Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
pp. 262–270, 2012.

[28] J. Lines, Time Series classification through
transformation and ensembles. PhD thesis, University
of East Anglia, 2015.

