
On the Effect of Endpoints on Dynamic Time Warping
Diego Furtado Silva

Universidade de São Paulo

diegofsilva@icmc.usp.br

Gustavo E. A. P. A. Batista
Universidade de São Paulo

gbatista@icmc.usp.br

Eamonn Keogh
University of California, Riverside

eamonn@cs.ucr.edu

ABSTRACT

While there exist a plethora of classification algorithms for most

data types, there is an increasing acceptance that the unique

properties of time series mean that the combination of nearest

neighbor classifiers and Dynamic Time Warping (DTW) is very

competitive across a host of domains, from medicine to astronomy

to environmental sensors. While there has been significant progress

in improving the efficiency and effectiveness of DTW in recent

years, in this work we demonstrate that an underappreciated issue

can significantly degrade the accuracy of DTW in real-world

deployments. This issue has probably escaped the attention of the

very active time series research community because of its reliance

on static highly contrived benchmark datasets, rather than real

world dynamic datasets where the problem tends to manifest itself.

In essence, the issue is that DTW’s eponymous invariance to

warping is only true for the main “body” of the two time series

being compared. However, for the “head” and “tail” of the time

series, the DTW algorithm affords no warping invariance. The

effect of this is that tiny differences at the beginning or end of the

time series (which may be either consequential or simply the result

of poor “cropping”) will tend to contribute disproportionally to the

estimated similarity, producing incorrect classifications. In this

work, we show that this effect is real, and reduces the performance

of the algorithm. We further show that we can fix the issue with a

subtle redesign of the DTW algorithm, and that we can learn an

appropriate setting for the extra parameter we introduced. We

further demonstrate that our generalization is amiable to all the

optimizations that make DTW tractable for large datasets.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Application – Data Mining

Keywords

Time Series, Dynamic Time Warping, Similarity Measures

1. INTRODUCTION
Following the huge growth of applications based on temporal

measurements, such as Quantified Self and Internet of Things [23],

time series data are becoming ubiquitous even in our quotidian

lives. It is increasingly difficult to think of a human interest or

endeavor, from medicine to astronomy, that does not produce

copious amounts of time series.

Among all the time series mining tasks, query-by-content is the

most basic. It is the fundamental subroutine used to support nearest-

neighbor classification, clustering, etc. The last decade has seen

mounting empirical evidence that the unique properties of time

series mean that Dynamic Time Warping (DTW) is the best

distance measure for time series across virtually all domains, from

activity recognition for dogs [11] to classifying star light curves to

ascertain the existence of exoplanets [5].

However, virtually all current research efforts assume a perfect

segmentation of the time series. This assumption is engendered by

the availability of dozens of contrived datasets from the UCR time

series archive [4]. Improvements on this (admittedly very useful)

resource have been seen as sufficient to warrant publication of a

new idea, but it would be better to see success on these benchmarks

as being only necessary to warrant consideration of a new

approach.

In particular, the way in which the majority of the datasets were

created and “cleaned” means that algorithms that do well on these

datasets can still fail when applied to real world streaming data.

The issue lends itself to a visually intuitive explanation. Figure 1

shows two examples from the Australian Sign Language dataset

aligned by DTW. We can see the utility of DTW here, as it aligns

the later peak of the blue (bold) time series to the earlier occurring

peak in the red (fine) time series. However, this figure also

illustrates a weakness of DTW. Because every point must be

matched, the first few points in the red sequence are forced to match

the first point in the blue sequence.

Figure 1. top) Two time series compared with DTW. While the

prefix of the red (fine) time series consists of only 6% of the

length, it is responsible for 70.5% of the error. bottom) We

propose to address this disproportionate appointing of error by

selectively ignoring parts of the prefix (and/or suffix)

While Figure 1 does show the problem on a real data object, the

reader may wonder how common this issue is “in the wild” (again,

for the most part, the UCR Archive datasets have been carefully

contrived to avoid this issue). We claim that at least in some

domains, this problem is very common. For example, heartbeat

extraction algorithms often segment the signal to begin at the

maximum of the QRS complex [22]. However, as shown in Figure

2 this location has the greatest viability in its prefixes and suffixes.

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

-1

0

1

This region corresponds to

only 6% of the length of the

signals, yet it accounts 70.5%

of the distance

Our solution: expand the

representational power of DTW

to ignore a small fraction of the

prefix (and suffix) of the signals

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGKDD MiLeTS’16, August 13–17, 2016, San Francisco, CA, USA.
Copyright 2016 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

Figure 2. Three heartbeats taken from a one-minute period of

a healthy male. The beats were extracted by a state-of-the-art

beat extraction algorithm [19], but there is significant variation

in the prefix (all three) and in the suffix (green vs. the other

two).

Similar remarks apply to gait cycle extraction algorithms [24].

Likewise, star light curves, for which DTW is known to be very

effective, have cycles extracted by a technique called universal

phasing [18]. However, universal phasing has the unfortunate side

effect of placing the maximum variance at the prefix and suffix of

the signals.

In this work, we address this problem of uninformative and

undesirable “information” contained just before and just after the

temporal measurement of informative data. For the sake of clarity,

we will refer to these unwanted values as prefix and suffix

information, and use endpoints to refer to both.

Our approach is simple and intuitive, but highly effective. We

modify the endpoint constraint of Dynamic Time Warping (DTW)

to provide endpoint invariance. The main idea behind our proposal

is allowing DTW to ignore some leading/trailing values in one or

both of the two time series under comparison. While our idea is

simple, it must be carefully executed. It is clear that ignoring too

much (useful) data is just as undesirable as paying attention to

spurious data.

We note that somewhat similar observations were known to the

signal processing community when DTW was the state-of-the-art

technique for speech processing (in the 1980’s and 90’s before

being superseded by Markov models [15]). However, the

importance of endpoint invariance for time series seems to be

largely unknown or underappreciated [10][16][17].

We can summarize the main contributions of this paper as follows:

 We draw the data mining community’s attention to the

endpoint invariance for what is, to the best of our knowledge,

the first time;

 We propose a modification of the well-known algorithm

Dynamic Time Warping to provide invariance to suffix and

prefix;

 Although simple and intuitive, we show that our method can

considerably improve the classification accuracy when

warranted, and just as importantly, our ideas do not reduce

classification accuracy if the dataset happens to not need

endpoint invariance;

 Unlike other potential fixes, our distance measure respects the

property of symmetry and, consequently, can be applied in a

multitude of data mining algorithms with no pathological

errors caused by the order of the objects in the dataset;

 In spite of the fact that we must add a parameter to DTW, we

show that it is possible to robustly learn a good value for this

parameter using only the training data.

The remainder of this paper is organized as follows. Section 2

formalizes the concept of time series suffix and prefix and shows

intuitive examples of how it affects the distance measurement, and

therefore, the classification accuracy. Section 3 summarizes the

main concepts necessary to understand our proposal (in particular,

a detailed review of the Dynamic Time Warping algorithm).

Section 4 places our ideas in the context of related work. We

explain our proposed method in detail in Section 5. In Section 6,

we empirically verify the utility of our ideas on synthetic and real

data. Having shown our ideas are effective, Section 7 explains how

to adapt state-of-the-art lower bound functions to the distance

measure proposed in this paper, a critical step to maintain

efficiency. Finally, in Section 8 we offer conclusions and directions

for future work.

2. Time Series Suffix and Prefix
Most research efforts for time series classification assume that all

the time series in the training and test sets are carefully segmented

by using the precise endpoints of the desirable event

[17][18][26][28]. Despite the ubiquity of time series datasets that

fulfill such an assumption, in practical situations the exact

endpoints of events are difficult to detect. In general, a perfectly

segmented dataset can only be achieved by manual segmentation

or some contrivance that uses external information.

To see this, we revisit the Gun-Point dataset, which has been used

in more than two hundred papers to test the accuracy of time series

classification [4]. As shown in Figure 3, the data objects considered

here do have perfectly flat prefixes and suffixes. However, these

were obtained only by carefully prompting the actor’s movements

with a metronome that produced an audible cue every five seconds.

Figure 3. The ubiquitous Gun-Point dataset was created by

tracking the hand of an actor (top). However, the perfectly flat

prefix and suffix were due to carefully training the actor to have

her hand immobile by her side one second before and one

second after the cue from a metronome (bottom)

In more realistic scenarios, the movement of pointing a gun/finger

must be detected among several different movements. Before

drawing the weapon, the actor could be running, talking on a cell

phone, etc.

For example, consider the scenario in which some movement was

performed just before the weapon was aimed. In addition, another

movement started immediately after the gun was returned to the

holster. In this case, the time series could have a more complex

shape as shown in Figure 4. As visually explained in Figure 1, it is

clear that prefix and suffix would greatly prejudice the distance

estimation in this case.

Figure 4. Example of a time series containing the event to be

classified (in blue) and prefix and suffix information (in red)

Another possible issue that can result from automatic segmentation

is illustrated in Figure 5. In this case, the algorithm used to extract

the time series was too “aggressive” and made the mistake of

truncating the last few observations of the event of interest.

Obviously, a similar issue could also happen at the beginning of the

signal.

0 40 80 120 160

0 50 100 150

Synchronizing

BEEP from

metronome

Synchronizing

BEEP from

metronome

“pointing a

gun/finger”

event

suffix
prefix

Figure 5. An example of an extracted time series containing an

incomplete subset of the shape to be classified (in blue) and a

prefix information (in red)

In this case, the time series is missing its true suffix. Even with such

missing information, the shape that describes the beginning of the

action may be enough such that it will be classified correctly.

However, the object that would otherwise be considered its nearest

neighbor may contain information of the entire movement, as

shown in Figure 4. To classify the badly cropped item in Figure 5

correctly, a distance measure must avoid matching the last few

observations of the complete event to the values observed in our

badly segmented event. In Section 5 we will show how our method

can solve these issues.

3. Definitions and Background
A time series 𝑥 is a sequence of 𝑛 ordered values such that

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑥𝑡 ∈ ℝ for any 𝑡 ∈ [1, 𝑛]. We assume that

two consecutive values are equally spaced in time or the interval

between them can be disregarded without loss of generality. For

clarity, we refer each value 𝑥𝑡 as observation.

The Dynamic Time Warping (DTW) algorithm is arguably the

most useful distance measure for time series analysis1. For

example, mounting empirical evidence strongly suggest that the

simple nearest neighbor algorithm using DTW outperforms more

“sophisticated” time series classification methods in a wide range

of application domains [28].

In contrast to other distance measures, such as those in the Lp-norm

family, the DTW computes a non-linear alignment between the

observations of the two time series being compared. In other words,

while Lp-norm distances are only able to compare the value 𝑥𝑡 to a

value 𝑦𝑡 of a time series 𝑦, DTW is able to compare 𝑥𝑡 to 𝑦𝑠 such

that 𝑡 ≈ 𝑠.

To compute the optimal non-linear alignment between a pair of

time series 𝑥 and 𝑦, with lengths 𝑛 and 𝑚 respectively, the DTW

typically bound to the following constraints:

 Endpoint constraint. The matching is made for the entire

length of time series 𝑥 and 𝑦. Therefore, it starts at the pair of

observations (1,1) and ends at (𝑛, 𝑚);

 Monotonicity constraint. The relative order of observations

must be preserved, i.e., if 𝑠1 < 𝑠2, the matching of 𝑥𝑡 with 𝑦𝑠1

is done before matching 𝑥𝑡 with 𝑦𝑠2;

 Continuity constraint. The matching is made in one-unit

steps. It means that the matching never “jumps” one or more

observations of any time series.

The calculation of DTW distance is performed by a dynamic

programming algorithm. The initial condition of such an algorithm

is defined by Equation 1.

𝑑𝑡𝑤(𝑖, 𝑗) = {

∞, 𝑖𝑓 (𝑖 = 0 𝑜𝑟 𝑗 = 0)𝑎𝑛𝑑 𝑖 ≠ 𝑗
0, 𝑖𝑓 𝑖 = 𝑗 = 0

 (1)

In order to find the optimal non-linear alignment between the

observations of the time series 𝑥 and 𝑦, DTW follows the

recurrence relation defined by Equation 2.

1 Note that DTW subsumes the second most useful measure, the Euclidean

distance, as a special case.

𝑑𝑡𝑤(𝑖, 𝑗) = 𝑐(𝑥𝑖 , 𝑦𝑗) + 𝑚𝑖𝑛 {

𝑑𝑡𝑤(𝑖 − 1, 𝑗)

𝑑𝑡𝑤(𝑖, 𝑗 − 1)

𝑑𝑡𝑤(𝑖 − 1, 𝑗 − 1)
 (2)

where 𝑖 𝜖 [1, 𝑛] and 𝑗 𝜖 [1, 𝑚], 𝑚 being the length of the time series

𝑦. The partial 𝑐(𝑥𝑖 , 𝑦𝑗) represents the cost of matching two

observations 𝑥𝑖 and 𝑦𝑗 and is calculated by the squared Euclidean

distance between them. Finally, the DTW distance returned is

𝐷𝑇𝑊(𝑥, 𝑦) = 𝑑𝑡𝑤(𝑛, 𝑚).

An additional constraint commonly applied to DTW is the warping

constraint. This constraint limits the time difference that the

algorithm is allowed to match the observations. In the matrix view

of DTW, this constraint limits the algorithm to calculate the values

of the DTW matrix in a region close to its main diagonal. The

benefit of using a warping constraint is two fold: the DTW

calculation takes less time (as it is not necessary to calculate values

for the entire distance matrix) and it avoids pathological

alignments. For example, when comparing heartbeats, we want to

allow a little warping flexibility to be invariant to small (and

medically irrelevant) changes in timing. However, it never makes

sense to attempt to align ten heartbeats to twenty-five heartbeats.

The warping constraint prevents such degenerate solutions. As a

practical confirmation of its utility using the constraint, we note that

it has been shown to improve classification accuracy [17].

The most common warping constraint for DTW is the Sakoe-Chiba

warping window [20]. The use of warping constraints adds a

parameter to be set by the user. However, several studies show that

small windows (usually smaller than 10%) are usually a good

choice for nearest neighbor classification [17].

4. Related Work
The utility of relaxing the endpoint constraint of DTW has been

previously noticed by the signal processing community, in the

context of speech [7] and music analysis [13]. However, the issue

seems to be unknown or glossed over in time series data mining.

The time series mining method that shares more similarities to our

proposal is the open-end DTW (OE-DTW) [25]. However, OE-

DTW was proposed to match incomplete time series to complete

references. In other words, such a method is based on the

assumption that we can construct a training set with carefully

cropped time series and we can know the exact point that represents

the beginning of the time series to be classified.

Specifically, OE-DTW is a method that allows ignoring any

amount of observations at the end of the training time series. The

final distance estimate is the value represented

by min
0≤𝑖≤𝑚

𝐷𝑇𝑊(𝑛, 𝑖), i.e., the final distance is the minimum value

in the last column of the DTW matrix.

A weakness of OE-DTW is that it does not consider the existence

of prefix information. A modification of the OE-DTW called open-

begin-end DTW (OBE-DTW) or subsequence DTW [12] mitigates

this issue. OBE-DTW allows the match of observations to start at

any position of the training time series. To allow DTW to do this,

the algorithm needs to initialize the entire first column of the DTW

matrix with zeros.

Although OBE-DTW recognizes that both prefix and suffix issues

may exist, it only addresses the problem in the training time series.

A more important observation is that OBE-DTW is not symmetric,

which severely affects its utility. For example, the results obtained

“pointing a

gun/finger”

event

prefix

by OBE-DTW in any clustering algorithm are dependent on the

order in which the algorithm processes the time series. To see this,

consider the hierarchical single-linkage clustering algorithm [29].

Figure 6 shows the result of clustering the same set of five time

series objects from the Motor Current dataset (c.f. Section 6.2.1),

presented in different orders to the clustering algorithm.

Specifically, the distance between the time series 𝑥 and 𝑦 is

calculated by 𝑂𝐵𝐸𝐷𝑇𝑊(𝑥, 𝑦) in the first case and by

𝑂𝐵𝐸𝐷𝑇𝑊(𝑦, 𝑥) in the second. Note that the results are completely

different, a very undesirable outcome.

Figure 6. Clustering results of the same dataset by using OBE-

DTW. The difference between the results is given by the fact

that they were obtained by presenting the time series in a

different order to the clustering algorithm

In addition to this issue, OBE-DTW has one other fatal flaw. In

essence, it can be “too invariant,” potentially causing meaningless

alignments in some cases. Figure 7 shows an extreme example of

this. In the top figure, all observations of flat line match to a single

observation in the sine wave, and the DTW distance obtained is

0.07. In the bottom figure, we reverse the roles of reference and

query. This time, all observations of the sine wave match to a single

observation in the flat line, and the DTW distance obtained is 69.0.

We observe a three orders of magnitude difference in the DTW

results.

Figure 7. The OBE-DTW alignment for the same pair of time

series. In the first (top), a sine wave is used as reference and the

flat line is used as query. In the second (bottom), the same sine

wave is used as query while the flat line is used as reference

Similar to the OBE-DTW, the method proposed in this paper is

based on a relaxation of the endpoint constraint. However, our

method is symmetric and strictly limits the amount of the signals

that can be ignored, preventing the meaningless alignments shown

in Figure 7. Figure 8 shows a comparison of the results obtained by

the classic DTW, the OBE-DTW, and the distance measure

proposed in this work when used to cluster the time series data

considered in Figure 6.

DTW OBE-DTW Our method

Figure 8. Clusterings on a toy dataset using the classic DTW

(left), OBE-DTW (center), and the distance measure proposed

in this paper (right). Note that our method achieves a perfect

and intuitive separation of the different classes

5. Prefix and Suffix-Invariant DTW (ψ-DTW)
While there are many different methods proposed for time series

classification (decision trees, etc.), it is known that the simple

nearest neighbor is extremely competitive in a wide range of

applications and conditions [28]. Given this, the only decision left

to the user is the choice of the distance measure.

In most cases, this choice is guided by the invariances required by

the task and domain [1]. In conjunction with simple techniques,

such as z-normalization, DTW can provide several invariances like

amplitude, offset and the warping (or local scaling) itself.

In this work, we address what we feel is the “missing invariance,”

the invariance to spurious prefix and suffix information. Given the

nature of our proposal, we call our method Prefix and Suffix-

Invariant DTW, or simply PSI-DTW (or ψ-DTW).

The relaxed version of the endpoint constraint proposed in this

work is defined as the following.

Relaxed endpoint constraint. Given an integer value 𝑟, the

alignment path between the time series 𝑥 and 𝑦 starts at any

pair of observations in {(1, 𝑐1 + 1)} ∪ {(𝑐1 + 1,1)} and ends

at any pair in {(𝑛 − 𝑐2, 𝑚)} ∪ {(𝑛, 𝑚 − 𝑐2)}, such that

𝑐1 𝑎𝑛𝑑 𝑐2 ∈ [0, 𝑟].

This relaxation of the endpoint constraint can avoid undesirable

matches at the beginning and the end of any 𝑥 or 𝑦 time series by

removing the obligation for the alignment path to start and end with

specific pairs of observation, namely the first and the last pairs. The

value 𝑟 used in this definition is the relaxation factor parameter that

needs to be defined by the user.

We recognize the general undesirability of adding a new parameter

to an algorithm. However, we argue it is necessary (c.f. Section 4).

In addition, we show that we are able to learn an appropriate 𝑟

solely from the training data. We will return to this topic in Section

6.3.

An important aspect of the proposed endpoint constraint is the fact

that, by definition, the same number of cells is “relaxed” for both

column and row in the cumulative cost matrix. This is what

guarantees the symmetry of ψ-DTW. If the number of relaxed

columns and rows was different, the starting and finishing cells of

the alignment found by ψ-𝐷𝑇𝑊(𝑥, 𝑦) could be outside of the region

defined by the endpoint constraint in the cost matrix used by ψ-

𝐷𝑇𝑊(𝑦, 𝑥).

The relaxation of endpoints slightly affects the initialization of the

DTW estimation algorithm defined in Equation 1. To accomplish

the new constraint, the initialization of DTW needs to be changed

to Equation 3.

𝑑𝑡𝑤(𝑖, 𝑗) = {

∞, 𝑖𝑓 𝑖 = 0 𝑎𝑛𝑑 𝑗 > 𝑟
0, 𝑖𝑓 𝑖 = 0 𝑎𝑛𝑑 𝑗 ≤ 𝑟
∞, 𝑖𝑓 𝑗 = 0 𝑎𝑛𝑑 𝑖 > 𝑟
0, 𝑖𝑓 𝑗 = 0 𝑎𝑛𝑑 𝑖 ≤ 𝑟

 (3)

After this initialization, the recurrence relation to fill the matrix is

unchanged; it is exactly the same as defined by Equation 2.

Finally, the ultimate distance estimate is not necessarily obtained

by retrieving the value in 𝑑𝑡𝑤(𝑛, 𝑚). This minor modification can

be directly obtained by the definition of the proposed relaxed

endpoint constraint. Formally, the final distance calculation is

given by Equation 4.

 𝜓 − 𝐷𝑇𝑊(𝑥, 𝑦, 𝑟) = min
(𝑖,𝑗)∈𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑡

[𝑑𝑡𝑤(𝑖, 𝑗)] ,

𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑡 = {(𝑛 − 𝑐, 𝑚)} ∪ {(𝑛, 𝑚 − 𝑐)} ∀ 𝑐 ∈ [0, 𝑟].
(4)

0 10 20 30 40 50 60 70

-1.5

0

1.5

0 10 20 30 40 50 60 70

-1.5

0

1.5

The algorithm to calculate ψ-DTW is simple. For concreteness,

Table 1 describes it in detail.

Table 1. ψ-DTW algorithm

Procedure ψ-DTW(x,y,r)
Input: Two user provided time series, x and y and the relaxation factor
parameter r
Output: The ψ-DTW distance between x and y

1

2

3

4

5

6

7

8

9

n←length(x), m←length(y)
M ← infinity_matrix(n+1,m+1)
M([0,r],0) ← 0
M(0,[0,r]) ← 0

for i ← 1 to n
 for j ← 1 to m
 M(i,j) ← c(xi,yj) + min(M(i-1,j-1),M(i,j-1), M(i-1,j))
minX ← min(M([n-r,n],m)), minY ← min(M(n,[m-r,m]))
return min(minX,minY)

The algorithm starts by defining the variables used to access the

length of time series (line 1) and the DTW matrix according to

Equation 3 (lines 2 to 4). The for loops (lines 5 to 7) fill the matrix

according to the recurrence relation defined in Equation 2. Finally,

the algorithm finds the minimum value in the region defined by the

new endpoint constrained and returns it as the distance estimate

(lines 8 and 9). To implement the constrained warping version of

this algorithm, one only needs to modify the interval of the second

for loop (line 6) according to the constraint definition.

Note that the proposed method is a generalization of DTW, thus it

is possible to obtain the classic DTW by our method. Specifically,

if 𝑟 = 0, the final result of our algorithm is exactly the same as the

classic DTW.

6. Experimental Evaluation
We begin this section by reviewing our experimental philosophy.

We are committed to reproducibility, thus we have made available

all the source code, datasets, detailed results and additional

experiments in a companion website for this work [21]. In addition

to reproducing our experiments, the interested reader can use our

code on their own datasets. We implemented all our ideas in

Matlab, as it is ubiquitous in the data mining community.

To test the robustness of our method, we compare its performance

against the accuracy obtained by the classic, unconstrained DTW.

In addition, we present results obtained using constrained-warping.

We refer to the constrained versions of the algorithms with names

containing the letter c. Specifically, cDTW refers to the DTW with

warping constraint. Similarly, ψ-cDTW stands for the constrained

version of ψ-DTW.

We are not directly interested in studying the effect of warping

window width on classification accuracy. The value of the warping

window width parameter has been shown to greatly affect accuracy,

but it has also been shown to be easy to learn a good setting for this

parameter with cross validation [17][26][28]. For simplicity, we

fixed it as 10% of the length of the query time series by default.

However, this setting limits the choice of the relaxation factor to ψ-

DTW. For any relaxation factor that is greater than or equal to the

warping length, the distance is the same. For this reason, when we

wanted to test the effect of larger relaxation factors, the warping

window used in the experiment was set by the same value as 𝑟.

We divide our experimental evaluation into two sections.

 In order to clearly demonstrate that our algorithm is doing

what we claim it can, we take perfectly cropped time series

data and add increasing amounts of spurious endpoint data.

This experiment simulates the scenario in which the

segmentation of time series is not perfect, i.e., there are

endpoints that may represent random behaviors.

 The experiments above will be telling, but unless real datasets

have the spurious endpoint problem, they will be of little

interest to the community. Thus, we apply ψ-DTW on real

datasets that we suspect have a high probability of the

presence of spurious endpoints.

For clarity of presentation, we have confined this work to the single

dimensional case. However, our proposal can be easily generalized

to multidimensional data.

6.1 The Effect of ψ-DTW on Different

Lengths of Endpoints
As noted above, the UCR Time Series Archive has been useful to

the community working on time series classification [4]. However,

in general, the highly contrived procedures used to collect and/or

clean most of the datasets prevent the appearance of prefixes and

suffixes (recall Figure 3). For this reason, the impact of endpoints

cannot be directly evaluated by the use of such datasets.

However, such “endpoint-free” data create a perfect starting point

to understand how different amounts of uninformative data can

affect both DTW and ψ-DTW. To see this, we consider some

datasets that are almost certainly free of specious prefix or suffix

information. To these we prepend and postpend random walk

subsequences with length varying from 0% to 50% of the original

data. Next, we compared the accuracy obtained using the nearest

neighbor classification on the modified datasets using both DTW

and ψ-DTW. At each length of added data, we average over three

runs with newly created data.

At this point, we are not learning the parameter 𝑟. Instead, we fixed

both the relaxation factor and warping constraint length as 10% of

the time series being compared.

Intuitively, as we add more and more spurious data, we expect to

see greater and greater decreases in accuracy. However, we expect

that ψ-DTW degrades slower. In fact, this is the exact behavior

observed in our experiments. Figure 9 shows the results on the

Cricket X dataset.

Figure 9. The accuracy after padding the Cricket X dataset

with increasing lengths of random walk data. When no such

spurious data is added, the accuracy obtained by the classic

DTW is very slightly better. As we encounter increasing

amounts of spurious data, ψ-DTW and ψ-cDTW degrade less

than DTW and cDTW

For brevity, here we show the results on only one dataset. However,

we note that this result describes the general behavior of the results

obtained in other datasets. We invite the interested reader to review

some additional experiments in our website [21].

6.2 Case Studies
In the previous experiment, we showed the robustness of ψ-DTW

in the presence of spurious prefix and suffix information in

artificially contrived time series data. In this section, we evaluate

our method on real data.

y-cDTW

y-DTW

DTW

cDTW

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

Relative length of added random walk

A
c
c
u
ra

c
y

The datasets we consider were extracted in a scenario in which we

do not have perfect knowledge or control over the events'

endpoints. In some cases, the original datasets were obtained by

recording sessions similar to the Gun-Point dataset (c.f. Section 2),

in which the invariance to endpoints is enforced by the data

collection procedure. In this case, we model the real world

conditions by ignoring the external cues or annotations. In

particular, we simulated a randomly-ordered stream of events

followed by a classic subsequence extraction step. For this phase,

we considered the simple sliding window approach. For additional

details on the extraction phase, please refer to [21].

In keeping with common practice, we adopted the use of

dictionaries as training data. A data dictionary is a subset of the

original training set containing only its most relevant examples.

The utility of creating dictionaries is two-fold [8]: it makes the

classifier faster and the accuracy obtained by dictionaries is

typically better than that obtained by using all the data, which may

contain outliers or mislabeled data.

To compute the relevance of training examples to the classification

task, we used the SimpleRank function [26]. This function returns

a ranking of exemplars according to their estimated contribution to

the classification accuracy. Then, we selected the top-k time series

of each class in the dictionary, with k empirically discovered for

each dataset.

The main intuition behind SimpleRank is to define a score for each

exemplar based on its “neighborhood.” For each exemplar 𝑡𝑗, its

nearest neighbor 𝑠 is “rewarded” if it belongs to the same class, i.e.,

𝑠 is used to correctly classify 𝑡𝑗. Otherwise, 𝑠 is “penalized” by

having its score decreased. Equation 5 formally defines the

SimpleRank function.

𝑟𝑎𝑛𝑘(𝑠) = ∑ {

1, 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑠) = 𝑐𝑙𝑎𝑠𝑠(𝑡𝑗)

−
2

num_classes − 1
, otherwise

𝑗

 (5)

The length of subsequences and the size of the dictionary for each

dataset were chosen in order to obtain the best accuracy in the

training set by using constrained DTW. In addition, the

SimpleRank used to construct the dictionaries was also

implemented by using the classic constrained DTW instead of the

distance measure proposed in this work. This was done to ensure

we are not biasing our experimental analysis in favor of our

method.

6.2.1 Motor Current Data
Our first case study considers electric motor current signals. This

dataset has long been a staple of researchers interested in

prognostics and novelty detection [14]. We refer the reader

interested in the procedure to generate such data to [6].

The data in question includes 21 classes representing different

operating conditions. In addition, a class that represents to (a slight)

diversity of healthy operation, the other classes represent different

defects in the apparatus (in particular, one to ten broken bars and

one to ten broken end-ring connectors).

The original data used in this study is segmented, but with no

attention paid to avoiding suffix or prefix inconsistences.

Therefore, in this case, we did not use the approach of simulating a

data stream. We segmented the original time series using a static

window placed in the middle of each time series. With this

procedure, the signals have different endpoints in each different

length we consider. Figure 10 shows the classification results.

Figure 10. Classification results obtained by varying the time

series length on the Motor Current dataset

Given that this dataset is a very clear case of badly-defined

endpoints, these results show the robustness of our proposal. Over

all lengths we experimented with, ψ-DTW beats DTW by a large

margin. Specifically, ψ-DTW can achieve accuracy rates as high as

40% while the best result achieved by the classic DTW is lower

than 12%.

6.2.2 Robot Surface and Activity Identification
In this case study, we consider the classification of signals collected

by the accelerometer embedded in a Sony ERS-210 Aibo Robot

[27]. This robot is a dog-like model equipped with a tri-axial

accelerometer to record its movements.

Using the streaming data sets collected by this robot, we evaluated

the classification accuracy in two different scenarios: surface and

activity recognition. In the former scenario, the goal is to identify

the type of surface in which the robot is walking on. Specifically,

the target classes for this problem are carpet, field, and cement.

Figure 11 shows the results for this dataset.

Figure 11. Classification results obtained by varying the time

series length on the Sony AIBO Robot Surface dataset

In the second scenario, the aim is the identification of the activity

performed by the robot. In this case, the target classes are the robot

playing soccer, standing in a stationary position, trying to walk with

one leg hooked, and walking straight into a fixed wall. Figure 12

shows the results obtained in this scenario.

Figure 12. Classification results obtained by varying the time

series length on the Sony AIBO Robot Activity dataset

In both scenarios evaluated in this study, the results obtained by ψ-

DTW are generally better than the classic DTW. However, there is

an important caveat to discuss. Despite the improvements in

accuracy in most time series lengths, the accuracy obtained by ψ-

DTW was the same or slightly worse than the performance of the

classic DTW in a few experiments. This happened because our

procedure to learn the relaxation factor was not able to find a more

y-DTW

y-cDTW

DTW

1100 1200 1300 1400 1500
0.05

0.15

0.25

0.35

0.45

Time Series Length

A
c
c
u
ra

c
y

cDTW

150 200 250 300 350
0.75

0.8

0.85

0.9

0.95

Time Series Length

A
c
c
u
ra

c
y

y-cDTW

y-DTW

DTW

cDTW

150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

Time Series Length

A
c
c
u
ra

c
y

y-cDTW

y-DTW

DTW

cDTW

suitable value in these cases. Even in these cases, the poor choice

of 𝑟 did not significantly affect the classification accuracy. Even so,

these results highlight the importance of the parameter learning

procedure, which we describe in detail in Section 6.3.

6.2.3 Gesture Recognition
Gesture recognition is one of the most studied tasks in the time

series classification literature. The automatic identification of

human gestures has become an increasingly popular mode of

human-computer interaction.

In this study, we used the Palm Graffiti Digits dataset [1], which

consists of recordings of different subjects “drawing” digits in the

air while facing a 3D camera. The goal of this task is the

classification of the digits drawn by the subjects. Figure 13 shows

the results.

Figure 13. Classification results obtained by varying the time

series length on the Palm Graffiti Digits dataset

Similar to our findings with the robot data, the accuracy rates

obtained by our proposal are usually better than the obtained by the

classic DTW. In few cases, the accuracy is slightly worse.

However, most important is the robustness of ψ-DTW to the cases

where the prefixes and suffixes seem to significantly affect the

classification. For instance, there is an expressive loss of accuracy

obtained by the classic DTW in the dataset containing time series

with 150 observations. The lost is notably less drastic when we

using ψ-DTW.

6.2.4 Sign Language Recognition
Another specific scenario with gesture data used in this work is the

recognition of sign language. A sign language is an alternative way

to communicate by gestures and body language that replace (or

augment) the acoustic communication. In this work we used a

dataset of Australian Sign Language (AUSLAN) [9]. The original

dataset is composed of signs separately recorded in different

sections. We used 10 arbitrarily chosen signs of each recording

session displaced as a data stream. Figure 14 shows the results.

Figure 14. Classification results obtained by varying the time

series length on the AUSLAN dataset

In contrast to the previous gesture recognition case, the accuracies

obtained by relaxing the endpoint constraint are always better for

this dataset. More importantly, the best accuracy rates were

significantly superior when using ψ-DTW.

6.2.5 Human Activity Recognition
Due to the growth in the use of mobile devices containing

movement sensors (such as accelerometers and gyroscopes), there

is also a notable increase in the interest of human activity analyses

using this kind of equipment.

In this final case study, we investigate the robustness of ψ-DTW in

the recognition of human activities using smartphone

accelerometers. For this purpose, we used a the dataset that first

appeared in [2]. Originally, the recordings are composed of 128

observations of three coordinates of the device’s accelerometers. In

our study, we used the x-coordinate disposed in a streaming

fashion. Figure 15 shows the results.

Figure 15. Classification results obtained by varying the time

series length on the Human Activity Recognition dataset

Again, the accuracy obtained by ψ-DTW is better than the obtained

by the classic DTW in all the cases for this dataset. This success of

these results is due to, in part, to a good choice of value to the

relaxation factor. This is the main topic of the following section.

6.3 On Learning the Relaxation Factor
The choice of the method to learn a value to set the parameter 𝑟

may be a critical step to the use of ψ-DTW. For this reason, we

devote this section to discuss this topic in details.

We start by demonstrating the sensitivity of ψ-DTW to the

relaxation factor. In this experiment, we executed the classification

of five random test sets for each dataset used as a study case. For

each execution, we annotated the best and worst result, i.e., the

accuracy obtained by the best and the worst choice of 𝑟. Figure 16

shows these results on the AUSLAN dataset. In this case, we can

see that a bad choice of 𝑟 always results in worse accuracy rates

than the classic DTW. On the other hand, a good choice will

improve the classification accuracy in all the cases. The goal of

learning the relaxation factor is to approximate as much as possible

to the best case.

Figure 16. Accuracies obtained in the AUSLAN dataset by the

best and worst values of relaxation factor

For some datasets, such as Motor Current, a poor choice of 𝑟 does

not result in worse accuracy than the classic DTW. In fact, the worst

case for any time series length in this dataset is given by choosing

𝑟 = 0, i.e., the classic DTW. However, the optimal choice of

parameter value has a highly positive impact on the classification.

In our experiments, we experimented with a wide range of possible

values to 𝑟. We set 𝑟 as a relative value to the length of the time

series under comparison. Specifically, we used a set of values 𝑟𝑙𝑟 ∈
{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}, such that 𝑟 =
⌈𝑛 ∗ 𝑟𝑙𝑟⌉, where 𝑛 is the length of the time series.

100 125 150 175 200
0.3

0.32

0.34

0.36

0.38

Time Series Length

A
c
c
u
ra

c
y

y-cDTW

y-DTW

DTW

cDTW

50 100 150 200 250
0.35

0.4

0.45

0.6

0.55

Time Series Length

A
c
c
u
ra

c
y

0.5

y-cDTW

y-DTW

DTW

cDTW

y-cDTW

y-DTW

DTW

cDTW

150 175 200 225 250
0.51

0.53

0.55

0.57

0.59

Time Series Length

A
c
c
u
ra

c
y

Best case

y-cDTW

Best case

y-DTW

DTW

cDTW

50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

Time Series Length

A
c
c
u
ra

c
y

Worst case

y-cDTW

Worst case

y-DTW

We limited the value of 𝑟 to be at most half the number of

observations of the time series in order to avoid meaningless

alignments, such as the ones obtained by OBE-DTW in the example

illustrated in Figure 7. Considering the same time series of that

example, if we have decided to use 𝑟𝑙𝑟 = 𝑝%, ∀ 𝑝 ∈ [0,100],
exactly 𝑝% of the values of the time series would be ignored.

Besides defining a range of values to evaluate, we need to define a

procedure to perform such evaluation. The first obvious choice is

to use the same training data and compute the accuracy obtained by

different values of the parameter by applying a cross-validation or

a leave-one-out procedure.

However, recall that we are using dictionaries as training data. Note

that the choice of the size of the dictionary is a crucial determinant

of the time complexity of the algorithm. For this reason, the number

of examples in the dictionary tends to be small in order to keep the

algorithm fast, which makes learning 𝑟 difficult if we use the data

in the dictionary exclusively.

For clarity, we measured the accuracy obtained by learning the

relaxation factor by varying the size of the validation set. In this

experiment, we used the training time series outside the dictionary

to learn the parameter. Given a choice of the validation set size, we

randomly chose examples to compose the validation set and only

took into account the accuracy resulted from the best choice of the

relaxation factor. In order to avoid results obtained by chance, we

repeated this procedure 50 times. Figure 17 illustrates an example

of the results obtained by this procedure.

Figure 17. Accuracy obtained by learning the relaxation factor

using different sizes of validation set for Sony Aibo Robot

Surface dataset with time series length of 250 observations

We performed this experiment on a wide range of datasets (c.f.

[21]). The results for all these datasets confirm the generality of the

behavior of increasing accuracy according to the increase in the

number of objects in the validation set. For this reason, in order to

learn the value of 𝑟, we used a validation set containing all the

training time series but those chosen as part of the dictionary. The

use of the exemplars in the dictionary creates a bias for learning

𝑟 = 0 when the nearest neighbor of a time series in the dictionary

would be itself, independent of the relaxation factor. In this case,

we would choose for the smallest value, i.e., 𝑟 = 0.

7. Lower Bounding of ψ-DTW
One of the biggest concerns while designing a new distance

measure is time efficiency. This is more prevalent in our case since

we are proposing a modification of Dynamic Time Warping, an

𝑂(𝑛2) algorithm. In fact, a straightforward implementation of the

nearest neighbor algorithm under DTW makes its use impractical

on large datasets. For this reason, the community has proposed

several methods to improve the efficiency of the similarity search

under DTW.

A recent paper on speeding-up similarity search [16] shows that the

combination of few simple techniques makes possible to handle

truly massive data under DTW. We claim that all these methods

can be applied to the ψ-DTW with simple or no modifications.

Some of the most important speed-up methods rely on the use of a

lower bound (LB) function. A LB function returns a value certainly

lower or equal to the true DTW between two objects. Our algorithm

is amenable to adaptation of LB functions.

Before explaining how to adapt LB functions to ψ-DTW, we briefly

explain the intuition behind the use of LB on time series similarity

search. Consider that we have a variable best-so-far that stores the

distance to the nearest neighbor know up to the current iteration of

the search algorithm. We can use this information to decide if we

can avoid the expensive calculation of DTW. In order to do this, for

each time series in the training set, we first calculate the LB of the

distance between it and the query. Clearly, if the LB function

returns a value greater than the best-so-far, the training object is not

the nearest neighbor of the query. Therefore, the current object can

be discarded before having its distance to the query estimated. We

can extend this to a k-nearest neighbor scenario by simply replacing

the best-so-far by the distance to the k-th nearest object known at

that moment.

This approach for pruning DTW calculations is only effective if the

LB function has the following properties: (i) its calculation is fast;

(ii) and it is tight, i.e., its value is close to the true DTW. Clearly,

these requirements imply a tightness-efficiency trade-off. For

instance, by simply using the value 0, we have an instantly-

calculated LB. However, this will never prune any distance

calculation. On the other hand, the classic DTW is also a LB

function itself, with the exact value as the actual distance. However,

its calculation is slow.

Now we are in position to answer the following question. How can

we use previously proposed LB functions with ψ-DTW?

We first note that ψ-DTW actually lower bounds the DTW, as

exemplified in Figure 18. From a practical standpoint, the

alignment path that starts at the first pair of observations and

finishes by matching the last one is a possible alignment found by

ψ-DTW that correspond to the exact classic DTW. Any other

alignment found is considered optimal only in the case in which it

provides a smaller value than the one obtained by DTW. This

situation occurs when our method disregards some pair of

observations that contributes to the total cost of matching.

Figure 18. The distance between all the pairs of fifty time series

objects in the AUSLAN dataset sorted by their DTW distances.

In this experiment, we used both warping constraint and

relaxation factor as 10% of the length of time series

For this reason, it is not possible to apply most of the known LB

functions directly to our method. Adapting a LB function to ψ-

DTW requires the careful analysis of the possible first and last pairs

of observations. For sake of exemplification, we will adopt the most

widely used LB function, the LB_Keogh [10]. This LB function has

arguably the best tightness-efficiency trade-off.

The calculation of LB_Keogh consists of two main steps. The first

step is the estimation of an envelope to a given query time series 𝑞

of length 𝑛. Specifically, the envelope is composed of an upper

sequence 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑛) and a lower sequence 𝐿 =
(𝐿1, 𝐿2, … , 𝐿𝑛) defined by Equation 6.

 𝑈𝑖 = max
𝑖−𝑤≤𝑗≤𝑖+𝑤

(𝑞𝑗)

𝐿𝑖 = min
𝑖−𝑤≤𝑗≤𝑖+𝑤

(𝑞𝑗)
, 1 ≤ 𝑖 ≤ 𝑛 (6)

Number of examples in the validation set

A
c
c
u
ra

c
y

0 50 100 150 200 250 300 350 4000.79

0.8

0.81

0.82

0.83

0.84

0.85

no warping

window

10% warping

window

0 200 400 600 800 1000 1200 1400
0

100

200

300
DTW

distance

Ψ-DTW

distance

where 𝑤 is the length of the warping constraint window. Clearly,

the partials 𝑖 − 𝑤 and 𝑖 + 𝑤 are restricted to the extent of the query.

Figure 19 exemplifies the upper and lower sequences of a given

query time series.

Figure 19. Upper and lower sequences of a given query time

series q estimated by LB_Keogh

Once the envelope is calculated, we are in the position to estimate

the value of the LB function. For each time series 𝑡 to be compared

to the query 𝑞, the value LB_Keogh is calculated as the Euclidean

distance between the observations of 𝑡 that falls outside the

envelope and the nearest upper or lower sequence. Formally, the

LB_Keogh between 𝑡 and 𝑞 is defined by Equation 7.

𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝑞, 𝑡) = ∑ {
(𝑡𝑖 − 𝑈𝑖)2, 𝑖𝑓 𝑡𝑖 > 𝑈𝑖

(𝐿𝑖 − 𝑡𝑖)2, 𝑖𝑓 𝑡𝑖 < 𝐿𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 (7)

A careful reader might notice that this is the squared value of the

original LB_Keogh. This is because the DTW defined in Section 3

also returns the squared version of the traditional DTW. Figure 20

illustrates this step in the comparison of the previously used query

𝑞 and a specific time series 𝑡.

Figure 20. The LB_Keogh is calculated by using the values of

the time series t that fall outside the region bounded by the

envelope

The only issue in directly applying LB_Keogh to lower bound ψ-

DTW is the fact that it is constrained by the classic endpoint

constraint of DTW. Therefore, in order to adapt LB_Keogh to our

method, we need to relax its endpoints. Since ψ-DTW can skip the

matching of the first and last 𝑟 observations in either 𝑞 or 𝑡, the LB

function should ignore these values. We call the adapted LB

function ψ-LB_Keogh, and define it formally in Equation 8.

ψ − 𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝑞, 𝑡) = ∑ {
(𝑡𝑖 − 𝑈𝑖)2, 𝑖𝑓 𝑡𝑖 > 𝑈𝑖

(𝐿𝑖 − 𝑡𝑖)2, 𝑖𝑓 𝑡𝑖 < 𝐿𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛−𝑟

𝑖=𝑟+1

 (8)

The only difference between Equations 7 and 8 is the range of 𝑖.
Figure 21 illustrates the ψ-LB_Keogh between 𝑞 and 𝑡.

Figure 21. ψ-LB_Keogh ignores the values in the dashed

regions

To visualize the tightness of ψ-LB_Keogh, Figure 22 shows the

distances and their respective LB for all the pairs of objects in the

training set of AUSLAN data.

Figure 22. DTW (top) ψ-DTW (bottom) with the respective

lower bound values, sorted by the LB

To further demonstrate the tightness of ψ-LB_Keogh, we compared

the tightness of ψ-LB_Keogh with that of LB_Keogh for all the

study cases in Section 6.2. We quantified the tightness of the LBs

by dividing them by the corresponding DTW distances. In this

experiment, we set the warping window as 10% of the time series

length. The relaxation factor takes the same value. Table 2 shows

the results obtained in the training set with the shortest time series

used in each study case.

Table 2. Tightness of LB_Keogh and ψ-LB_Keogh

Dataset
Tightness of

LB_Keogh

Tightness of

ψ-LB_Keogh

AUSLAN 0.522 0.484

Human Activity 0.173 0.152

Motor Current 0.259 0.292

Palm Graffiti Digits 0.549 0.490

Sony Robot Activity 0.120 0.110

Sony Robot Surface 0.174 0.151

From these results, we can note that the tightness of both methods

is similar. In fact, ψ-LB_Keogh is even tighter than LB_Keogh in

one of the experimented datasets. This indicates that endpoint

constraint relaxation does not impair the tightness of ψ-LB_Keogh.

8. Conclusion
In this paper, we proposed a modification of the endpoint constraint

of DTW to make it suffix- and prefix-invariant. In addition to be

simple and intuitive, our method is quite effective. Experimental

results show that our method outperforms the classic DTW by a

large margin in various datasets that contain spurious endpoints. In

addition, we demonstrated that the distance obtained by our method

can be tightly lower bounded by a slight modification of the current

lower bounds of DTW, which indicates that our modified DTW is

tractable for large datasets.

Though the results are very promising, we believe that there is room

for improvement. Specifically, we plan to investigate alternative

ways to learn the relaxation factor parameter, especially when faced

with small amounts of training data.

Finally, for the sake of clarity and brevity in this work we only

discussed the application of our algorithm to classification.

However, it can also be applied to a large variety of tasks, such as

clustering, motif discovery, outlier detection, etc. We leave those

explorations for future work.

9. REFERENCES
[1] Alon, J., Athitsos, V., Yuan, Q., and Sclaroff, S. 2009. A

unified framework for gesture recognition and

spatiotemporal gesture segmentation. IEEE T. Pattern. Anal.

31, 9, 1685-1699.

0 5 10 15 20 25 30 35 40 45 50

U

L

q

0 5 10 15 20 25 30 35 40 45 50

U

L

t

0 5 10 15 20 25 30 35 40 45 50

U

L

t

y-DTW

y-LB_Keogh

DTW

LB_Keogh

0 200 400 600 800 1000 1200 1400
0

50

100

150

0 200 400 600 800 1000 1200 1400
0

50

100

150

[2] Anguita, D., Ghio, A., Oneto, L., Parra, X. and Reyes-Ortiz,

J. L. 2012. Human activity recognition on smartphones using

a multiclass hardware-friendly support vector machine. In

Proceedings of the International Workshop of Ambient

Assisted Living. IWALL’12 Springer Berlin Heidelberg, 216-

223.

[3] Batista, G. E. A. P. A., Keogh, E. J., Tataw, O. M., and

Souza, V. M. 2014. CID: an efficient complexity-invariant

distance for time series. Data Min. Knowl. Discov., 28, 3,

634-669.

[4] Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A.,

Mueen, A. and Batista, G. E. A. P. A. 2015. The UCR Time

Series Classification Archive. URL

www.cs.ucr.edu/~eamonn/time_series_data/

[5] Debray, A. and Wu, R. 2013. Astronomical implications of

Machine Learning.

[6] Demerdash, N.A. and Bangura, J.F., 1999. Characterization

of induction motors in adjustable-speed drives using a time-

stepping coupled finite-element state-space method including

experimental validation. IEEE T. Ind. Appl. 35, 4, 790-802.

[7] Haltsonen, S. 1984. An endpoint relaxation method for

dynamic time warping algorithms. In Proceedings of the

IEEE International Conference on Acoustics, Speech and

Signal Processing. ICASSP’84. IEEE, 360-363.

[8] Hu, B., Chen, Y., and Keogh, E. 2013. Time Series

Classification under More Realistic Assumptions. In

Proceedings of the SIAM International Conference on Data

Mining. SDM’13. SIAM, 578-586.

[9] Kadous, M. W. 2002. Temporal Classification: Extending

the Classification Paradigm to Multivariate Time Series.

Doctoral Thesis. University of New South Wales.

[10] Keogh, E. and Ratanamahatana, C. A. 2005. Exact indexing

of dynamic time warping. Knowl. Inf. Syst., 7, 3, 358-386.

[11] Kiyohara, T., Orihara, R., Sei, Y., Tahara, Y., and Ohsuga,

A. 2015. Activity Recognition for Dogs Based on Time-

series Data Analysis. In Proceedings of the International

Conference on Agents and Artificial Intelligence.

ICAART’15. Springer, 163-184.

[12] Müller, M. 2007. Dynamic time warping. Information

retrieval for music and motion. Springer, 69-84.

[13] Myers, C. S. 1980. A comparative study of several dynamic

time warping algorithms for speech recognition. Doctoral

Thesis. Massachusetts Institute of Technology.

[14] Povinelli, R. J., Johnson, M. T., Lindgren, A. C., and Ye, J.

2004. Time series classification using Gaussian mixture

models of reconstructed phase spaces. IEEE T. Knowl. Data.

En., 16, 6, 779-783.

[15] Rabiner, L. R. and Juang, B. 1993. Pattern-comparison

techniques. Fundamentals of speech recognition. Prentice-

Hall, Inc., 141-241.

[16] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,

Westover, B., Zhu, Q., Zakaria, J., and Keogh, E. 2012.

Searching and mining trillions of time series subsequences

under dynamic time warping. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining. KDD’12. ACM, 262-270.

[17] Ratanamahatana, C. A. and Keogh, E. 2005. Three Myths

about Dynamic Time Warping Data Mining. In Proceedings

of the SIAM International Conference on Data Mining.

SDM’05. SIAM, 506-510.

[18] Rebbapragada, U., Protopapas, P., Brodley, C., and Alcock,

C. 2009. Finding anomalous periodic time series. Mach.

Learn., 74, 3, 281-313.

[19] Saini, I., Singh, D., and Khosla, A. 2013. QRS detection

using K-Nearest neighbor algorithm (KNN) and evaluation

on standard ECG databases. Journal of Advanced Research,

4, 331–344

[20] Sakoe, H. and Chiba, S. 1978. Dynamic Programming

Algorithm Optimization for Spoken Word Recognition.

IEEE T. Acoust. Speech, 26, 1, 43-49.

[21] Silva, D. F., Batista, G. E. A. P. A., Keogh, E. 2016.

Complementary website for this work. URL

https://sites.google.com/site/relaxedboundarydtw/

[22] Suhrbier, A., Heringer, R., Walther, T., Malberg, H., and

Wessel, N. 2006. Comparison of three methods for beat-to-

beat-interval extraction from continuous blood pressure and

electrocardiogram with respect to heart rate variability

analysis. Biomed. Tech., 51, 2, 70-76.

[23] Swan, M. 2012. Sensor Mania! The Internet of Things,

Wearable Computing, Objective Metrics, and the Quantified

Self 2.0. J. Sens. Actuator Netw., 1, 3, 217-253

[24] Taborri, J., Palermo, E., Rossi, S. and Cappa, P. 2016. Gait

Partitioning Methods: A Systematic Review. Sensors, 16,1,

66.

[25] Tormene, P., Giorgino, T., Quaglini, S., and Stefanelli, M.

2009. Matching incomplete time series with dynamic time

warping: an algorithm and an application to post-stroke

rehabilitation. Artif. Intell. Med., 45, 1, 11-34.

[26] Ueno, K., Xi, X., Keogh, E., and Lee, D.-J. 2006. Anytime

Classification Using the Nearest Neighbor Algorithm with

Applications to Stream Mining. In Proceedings of the IEEE

International Conference on Data Mining. ICDM’06. IEEE,

623-632.

[27] Vail, D. and Veloso, M. 2004. Learning from accelerometer

data on a legged robot. In Proceedings of the IFAC/EURON

Symposium on Intelligent Autonomous Vehicles.

[28] Wang, X., Mueen, A., Ding, H., Trajcevski, G.,

Scheuermann, P., and Keogh, E. 2013. Experimental

comparison of representation methods and distance measures

for time series data. Data Min. Knowl. Discov., 26, 2, 275-

309.

[29] Xu, R., and Wunsch, I. 2005. Survey of clustering

algorithms. IEEE T. Neural Networ., 16, 3, 645-678.

