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ABSTRACT 

While there exist a plethora of classification algorithms for most 

data types, there is an increasing acceptance that the unique 

properties of time series mean that the combination of nearest 

neighbor classifiers and Dynamic Time Warping (DTW) is very 

competitive across a host of domains, from medicine to astronomy 

to environmental sensors. While there has been significant progress 

in improving the efficiency and effectiveness of DTW in recent 

years, in this work we demonstrate that an underappreciated issue 

can significantly degrade the accuracy of DTW in real-world 

deployments. This issue has probably escaped the attention of the 

very active time series research community because of its reliance 

on static highly contrived benchmark datasets, rather than real 

world dynamic datasets where the problem tends to manifest itself. 

In essence, the issue is that DTW’s eponymous invariance to 

warping is only true for the main “body” of the two time series 

being compared. However, for the “head” and “tail” of the time 

series, the DTW algorithm affords no warping invariance. The 

effect of this is that tiny differences at the beginning or end of the 

time series (which may be either consequential or simply the result 

of poor “cropping”) will tend to contribute disproportionally to the 

estimated similarity, producing incorrect classifications. In this 

work, we show that this effect is real, and reduces the performance 

of the algorithm. We further show that we can fix the issue with a 

subtle redesign of the DTW algorithm, and that we can learn an 

appropriate setting for the extra parameter we introduced. We 

further demonstrate that our generalization is amiable to all the 

optimizations that make DTW tractable for large datasets.  

Categories and Subject Descriptors  

H.2.8 [Information Systems]: Database Application – Data Mining 
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1. INTRODUCTION 
Following the huge growth of applications based on temporal 

measurements, such as Quantified Self and Internet of Things [23], 

time series data are becoming ubiquitous even in our quotidian 

lives. It is increasingly difficult to think of a human interest or 

endeavor, from medicine to astronomy, that does not produce 

copious amounts of time series. 

Among all the time series mining tasks, query-by-content is the 

most basic. It is the fundamental subroutine used to support nearest-

neighbor classification, clustering, etc. The last decade has seen 

mounting empirical evidence that the unique properties of time 

series mean that Dynamic Time Warping (DTW) is the best 

distance measure for time series across virtually all domains, from 

activity recognition for dogs [11] to classifying star light curves to 

ascertain the existence of exoplanets [5]. 

However, virtually all current research efforts assume a perfect 

segmentation of the time series. This assumption is engendered by 

the availability of dozens of contrived datasets from the UCR time 

series archive [4]. Improvements on this (admittedly very useful) 

resource have been seen as sufficient to warrant publication of a 

new idea, but it would be better to see success on these benchmarks 

as being only necessary to warrant consideration of a new 

approach.  

In particular, the way in which the majority of the datasets were 

created and “cleaned” means that algorithms that do well on these 

datasets can still fail when applied to real world streaming data. 

The issue lends itself to a visually intuitive explanation. Figure 1 

shows two examples from the Australian Sign Language dataset 

aligned by DTW. We can see the utility of DTW here, as it aligns 

the later peak of the blue (bold) time series to the earlier occurring 

peak in the red (fine) time series. However, this figure also 

illustrates a weakness of DTW. Because every point must be 

matched, the first few points in the red sequence are forced to match 

the first point in the blue sequence. 

 

Figure 1. top) Two time series compared with DTW. While the 

prefix of the red (fine) time series consists of only 6% of the 

length, it is responsible for 70.5% of the error. bottom) We 

propose to address this disproportionate appointing of error by 

selectively ignoring parts of the prefix (and/or suffix) 

While Figure 1 does show the problem on a real data object, the 

reader may wonder how common this issue is “in the wild” (again, 

for the most part, the UCR Archive datasets have been carefully 

contrived to avoid this issue). We claim that at least in some 

domains, this problem is very common. For example, heartbeat 

extraction algorithms often segment the signal to begin at the 

maximum of the QRS complex [22]. However, as shown in Figure 

2 this location has the greatest viability in its prefixes and suffixes.  
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Figure 2. Three heartbeats taken from a one-minute period of 

a healthy male. The beats were extracted by a state-of-the-art 

beat extraction algorithm [19], but there is significant variation 

in the prefix (all three) and in the suffix (green vs. the other 

two). 

Similar remarks apply to gait cycle extraction algorithms [24]. 

Likewise, star light curves, for which DTW is known to be very 

effective, have cycles extracted by a technique called universal 

phasing [18]. However, universal phasing has the unfortunate side 

effect of placing the maximum variance at the prefix and suffix of 

the signals. 

In this work, we address this problem of uninformative and 

undesirable “information” contained just before and just after the 

temporal measurement of informative data. For the sake of clarity, 

we will refer to these unwanted values as prefix and suffix 

information, and use endpoints to refer to both. 

Our approach is simple and intuitive, but highly effective. We 

modify the endpoint constraint of Dynamic Time Warping (DTW) 

to provide endpoint invariance. The main idea behind our proposal 

is allowing DTW to ignore some leading/trailing values in one or 

both of the two time series under comparison. While our idea is 

simple, it must be carefully executed. It is clear that ignoring too 

much (useful) data is just as undesirable as paying attention to 

spurious data.  

We note that somewhat similar observations were known to the 

signal processing community when DTW was the state-of-the-art 

technique for speech processing (in the 1980’s and 90’s before 

being superseded by Markov models [15]). However, the 

importance of endpoint invariance for time series seems to be 

largely unknown or underappreciated [10][16][17]. 

We can summarize the main contributions of this paper as follows: 

 We draw the data mining community’s attention to the 

endpoint invariance for what is, to the best of our knowledge, 

the first time; 

 We propose a modification of the well-known algorithm 

Dynamic Time Warping to provide invariance to suffix and 

prefix; 

 Although simple and intuitive, we show that our method can 

considerably improve the classification accuracy when 

warranted, and just as importantly, our ideas do not reduce 

classification accuracy if the dataset happens to not need 

endpoint invariance; 

 Unlike other potential fixes, our distance measure respects the 

property of symmetry and, consequently, can be applied in a 

multitude of data mining algorithms with no pathological 

errors caused by the order of the objects in the dataset;  

 In spite of the fact that we must add a parameter to DTW, we 

show that it is possible to robustly learn a good value for this 

parameter using only the training data. 

The remainder of this paper is organized as follows. Section 2 

formalizes the concept of time series suffix and prefix and shows 

intuitive examples of how it affects the distance measurement, and 

therefore, the classification accuracy. Section 3 summarizes the 

main concepts necessary to understand our proposal (in particular, 

a detailed review of the Dynamic Time Warping algorithm). 

Section 4 places our ideas in the context of related work. We 

explain our proposed method in detail in Section 5. In Section 6, 

we empirically verify the utility of our ideas on synthetic and real 

data. Having shown our ideas are effective, Section 7 explains how 

to adapt state-of-the-art lower bound functions to the distance 

measure proposed in this paper, a critical step to maintain 

efficiency. Finally, in Section 8 we offer conclusions and directions 

for future work.  

2. Time Series Suffix and Prefix 
Most research efforts for time series classification assume that all 

the time series in the training and test sets are carefully segmented 

by using the precise endpoints of the desirable event 

[17][18][26][28]. Despite the ubiquity of time series datasets that 

fulfill such an assumption, in practical situations the exact 

endpoints of events are difficult to detect. In general, a perfectly 

segmented dataset can only be achieved by manual segmentation 

or some contrivance that uses external information.  

To see this, we revisit the Gun-Point dataset, which has been used 

in more than two hundred papers to test the accuracy of time series 

classification [4]. As shown in Figure 3, the data objects considered 

here do have perfectly flat prefixes and suffixes. However, these 

were obtained only by carefully prompting the actor’s movements 

with a metronome that produced an audible cue every five seconds. 

 

Figure 3. The ubiquitous Gun-Point dataset was created by 

tracking the hand of an actor (top). However, the perfectly flat 

prefix and suffix were due to carefully training the actor to have 

her hand immobile by her side one second before and one 

second after the cue from a metronome (bottom) 

In more realistic scenarios, the movement of pointing a gun/finger 

must be detected among several different movements. Before 

drawing the weapon, the actor could be running, talking on a cell 

phone, etc.  

For example, consider the scenario in which some movement was 

performed just before the weapon was aimed. In addition, another 

movement started immediately after the gun was returned to the 

holster. In this case, the time series could have a more complex 

shape as shown in Figure 4. As visually explained in Figure 1, it is 

clear that prefix and suffix would greatly prejudice the distance 

estimation in this case. 

 

Figure 4. Example of a time series containing the event to be 

classified (in blue) and prefix and suffix information (in red) 

Another possible issue that can result from automatic segmentation 

is illustrated in Figure 5. In this case, the algorithm used to extract 

the time series was too “aggressive” and made the mistake of 

truncating the last few observations of the event of interest. 

Obviously, a similar issue could also happen at the beginning of the 

signal. 
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Figure 5. An example of an extracted time series containing an 

incomplete subset of the shape to be classified (in blue) and a 

prefix information (in red) 

In this case, the time series is missing its true suffix. Even with such 

missing information, the shape that describes the beginning of the 

action may be enough such that it will be classified correctly. 

However, the object that would otherwise be considered its nearest 

neighbor may contain information of the entire movement, as 

shown in Figure 4. To classify the badly cropped item in Figure 5 

correctly, a distance measure must avoid matching the last few 

observations of the complete event to the values observed in our 

badly segmented event. In Section 5 we will show how our method 

can solve these issues. 

3. Definitions and Background 
A time series 𝑥 is a sequence of 𝑛 ordered values such that 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑥𝑡 ∈ ℝ for any 𝑡 ∈ [1, 𝑛]. We assume that 

two consecutive values are equally spaced in time or the interval 

between them can be disregarded without loss of generality. For 

clarity, we refer each value 𝑥𝑡 as observation. 

The Dynamic Time Warping (DTW) algorithm is arguably the 

most useful distance measure for time series analysis1. For 

example, mounting empirical evidence strongly suggest that the 

simple nearest neighbor algorithm using DTW outperforms more 

“sophisticated” time series classification methods in a wide range 

of application domains [28]. 

In contrast to other distance measures, such as those in the Lp-norm 

family, the DTW computes a non-linear alignment between the 

observations of the two time series being compared. In other words, 

while Lp-norm distances are only able to compare the value 𝑥𝑡 to a 

value 𝑦𝑡 of a time series 𝑦, DTW is able to compare 𝑥𝑡 to 𝑦𝑠 such 

that 𝑡 ≈ 𝑠. 

To compute the optimal non-linear alignment between a pair of 

time series 𝑥 and 𝑦, with lengths 𝑛 and 𝑚 respectively, the DTW 

typically bound to the following constraints: 

 Endpoint constraint. The matching is made for the entire 

length of time series 𝑥 and 𝑦. Therefore, it starts at the pair of 

observations (1,1) and ends at (𝑛, 𝑚); 

 Monotonicity constraint. The relative order of observations 

must be preserved, i.e., if 𝑠1 < 𝑠2, the matching of 𝑥𝑡 with 𝑦𝑠1 

is done before matching 𝑥𝑡 with 𝑦𝑠2; 

 Continuity constraint. The matching is made in one-unit 

steps. It means that the matching never “jumps” one or more 

observations of any time series. 

The calculation of DTW distance is performed by a dynamic 

programming algorithm. The initial condition of such an algorithm 

is defined by Equation 1. 

 
𝑑𝑡𝑤(𝑖, 𝑗) =  {

∞, 𝑖𝑓 (𝑖 = 0 𝑜𝑟 𝑗 = 0)𝑎𝑛𝑑 𝑖 ≠ 𝑗
0, 𝑖𝑓 𝑖 = 𝑗 = 0

 (1) 

In order to find the optimal non-linear alignment between the 

observations of the time series 𝑥 and 𝑦, DTW follows the 

recurrence relation defined by Equation 2. 

                                                                 

1 Note that DTW subsumes the second most useful measure, the Euclidean 

distance, as a special case. 

 

𝑑𝑡𝑤(𝑖, 𝑗) =  𝑐(𝑥𝑖 , 𝑦𝑗) + 𝑚𝑖𝑛 {

𝑑𝑡𝑤(𝑖 − 1, 𝑗)

𝑑𝑡𝑤(𝑖, 𝑗 − 1)

𝑑𝑡𝑤(𝑖 − 1, 𝑗 − 1)
 (2) 

where 𝑖 𝜖 [1, 𝑛] and 𝑗 𝜖 [1, 𝑚], 𝑚 being the length of the time series 

𝑦. The partial 𝑐(𝑥𝑖 , 𝑦𝑗) represents the cost of matching two 

observations 𝑥𝑖 and 𝑦𝑗  and is calculated by the squared Euclidean 

distance between them. Finally, the DTW distance returned is 

𝐷𝑇𝑊(𝑥, 𝑦) = 𝑑𝑡𝑤(𝑛, 𝑚). 

An additional constraint commonly applied to DTW is the warping 

constraint. This constraint limits the time difference that the 

algorithm is allowed to match the observations. In the matrix view 

of DTW, this constraint limits the algorithm to calculate the values 

of the DTW matrix in a region close to its main diagonal. The 

benefit of using a warping constraint is two fold: the DTW 

calculation takes less time (as it is not necessary to calculate values 

for the entire distance matrix) and it avoids pathological 

alignments. For example, when comparing heartbeats, we want to 

allow a little warping flexibility to be invariant to small (and 

medically irrelevant) changes in timing. However, it never makes 

sense to attempt to align ten heartbeats to twenty-five heartbeats. 

The warping constraint prevents such degenerate solutions. As a 

practical confirmation of its utility using the constraint, we note that 

it has been shown to improve classification accuracy [17]. 

The most common warping constraint for DTW is the Sakoe-Chiba 

warping window [20]. The use of warping constraints adds a 

parameter to be set by the user. However, several studies show that 

small windows (usually smaller than 10%) are usually a good 

choice for nearest neighbor classification [17]. 

4. Related Work 
The utility of relaxing the endpoint constraint of DTW has been 

previously noticed by the signal processing community, in the 

context of speech [7] and music analysis [13]. However, the issue 

seems to be unknown or glossed over in time series data mining. 

The time series mining method that shares more similarities to our 

proposal is the open-end DTW (OE-DTW) [25]. However, OE-

DTW was proposed to match incomplete time series to complete 

references. In other words, such a method is based on the 

assumption that we can construct a training set with carefully 

cropped time series and we can know the exact point that represents 

the beginning of the time series to be classified.  

Specifically, OE-DTW is a method that allows ignoring any 

amount of observations at the end of the training time series. The 

final distance estimate is the value represented 

by min
0≤𝑖≤𝑚

𝐷𝑇𝑊(𝑛, 𝑖), i.e., the final distance is the minimum value 

in the last column of the DTW matrix. 

A weakness of OE-DTW is that it does not consider the existence 

of prefix information. A modification of the OE-DTW called open-

begin-end DTW (OBE-DTW) or subsequence DTW [12] mitigates 

this issue. OBE-DTW allows the match of observations to start at 

any position of the training time series. To allow DTW to do this, 

the algorithm needs to initialize the entire first column of the DTW 

matrix with zeros. 

Although OBE-DTW recognizes that both prefix and suffix issues 

may exist, it only addresses the problem in the training time series. 

A more important observation is that OBE-DTW is not symmetric, 

which severely affects its utility. For example, the results obtained 
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by OBE-DTW in any clustering algorithm are dependent on the 

order in which the algorithm processes the time series. To see this, 

consider the hierarchical single-linkage clustering algorithm [29]. 

Figure 6 shows the result of clustering the same set of five time 

series objects from the Motor Current dataset (c.f. Section 6.2.1), 

presented in different orders to the clustering algorithm. 

Specifically, the distance between the time series 𝑥 and 𝑦 is 

calculated by 𝑂𝐵𝐸𝐷𝑇𝑊(𝑥, 𝑦) in the first case and by 

𝑂𝐵𝐸𝐷𝑇𝑊(𝑦, 𝑥) in the second. Note that the results are completely 

different, a very undesirable outcome. 

 

Figure 6. Clustering results of the same dataset by using OBE-

DTW. The difference between the results is given by the fact 

that they were obtained by presenting the time series in a 

different order to the clustering algorithm 

In addition to this issue, OBE-DTW has one other fatal flaw. In 

essence, it can be “too invariant,” potentially causing meaningless 

alignments in some cases. Figure 7 shows an extreme example of 

this. In the top figure, all observations of flat line match to a single 

observation in the sine wave, and the DTW distance obtained is 

0.07. In the bottom figure, we reverse the roles of reference and 

query. This time, all observations of the sine wave match to a single 

observation in the flat line, and the DTW distance obtained is 69.0. 

We observe a three orders of magnitude difference in the DTW 

results. 

 

Figure 7. The OBE-DTW alignment for the same pair of time 

series. In the first (top), a sine wave is used as reference and the 

flat line is used as query. In the second (bottom), the same sine 

wave is used as query while the flat line is used as reference 

Similar to the OBE-DTW, the method proposed in this paper is 

based on a relaxation of the endpoint constraint. However, our 

method is symmetric and strictly limits the amount of the signals 

that can be ignored, preventing the meaningless alignments shown 

in Figure 7. Figure 8 shows a comparison of the results obtained by 

the classic DTW, the OBE-DTW, and the distance measure 

proposed in this work when used to cluster the time series data 

considered in Figure 6. 

DTW OBE-DTW Our method

 

Figure 8. Clusterings on a toy dataset using the classic DTW 

(left), OBE-DTW (center), and the distance measure proposed 

in this paper (right). Note that our method achieves a perfect 

and intuitive separation of the different classes 

5. Prefix and Suffix-Invariant DTW (ψ-DTW) 
While there are many different methods proposed for time series 

classification (decision trees, etc.), it is known that the simple 

nearest neighbor is extremely competitive in a wide range of 

applications and conditions [28]. Given this, the only decision left 

to the user is the choice of the distance measure. 

In most cases, this choice is guided by the invariances required by 

the task and domain [1]. In conjunction with simple techniques, 

such as z-normalization, DTW can provide several invariances like 

amplitude, offset and the warping (or local scaling) itself. 

In this work, we address what we feel is the “missing invariance,” 

the invariance to spurious prefix and suffix information. Given the 

nature of our proposal, we call our method Prefix and Suffix-

Invariant DTW, or simply PSI-DTW (or ψ-DTW). 

The relaxed version of the endpoint constraint proposed in this 

work is defined as the following. 

Relaxed endpoint constraint. Given an integer value 𝑟, the 

alignment path between the time series 𝑥 and 𝑦 starts at any 

pair of observations in {(1, 𝑐1 + 1)} ∪ {(𝑐1 + 1,1)}  and ends 

at any pair in {(𝑛 − 𝑐2, 𝑚)} ∪ {(𝑛, 𝑚 − 𝑐2)}, such that 

𝑐1 𝑎𝑛𝑑 𝑐2 ∈ [0, 𝑟]. 

This relaxation of the endpoint constraint can avoid undesirable 

matches at the beginning and the end of any 𝑥 or 𝑦 time series by 

removing the obligation for the alignment path to start and end with 

specific pairs of observation, namely the first and the last pairs. The 

value 𝑟 used in this definition is the relaxation factor parameter that 

needs to be defined by the user.  

We recognize the general undesirability of adding a new parameter 

to an algorithm. However, we argue it is necessary (c.f. Section 4). 

In addition, we show that we are able to learn an appropriate 𝑟 

solely from the training data. We will return to this topic in Section 

6.3. 

An important aspect of the proposed endpoint constraint is the fact 

that, by definition, the same number of cells is “relaxed” for both 

column and row in the cumulative cost matrix. This is what 

guarantees the symmetry of ψ-DTW. If the number of relaxed 

columns and rows was different, the starting and finishing cells of 

the alignment found by ψ-𝐷𝑇𝑊(𝑥, 𝑦) could be outside of the region 

defined by the endpoint constraint in the cost matrix used by ψ-

𝐷𝑇𝑊(𝑦, 𝑥). 

The relaxation of endpoints slightly affects the initialization of the 

DTW estimation algorithm defined in Equation 1. To accomplish 

the new constraint, the initialization of DTW needs to be changed 

to Equation 3. 

 

𝑑𝑡𝑤(𝑖, 𝑗) =  {

∞, 𝑖𝑓 𝑖 = 0 𝑎𝑛𝑑 𝑗 > 𝑟
0, 𝑖𝑓 𝑖 = 0 𝑎𝑛𝑑 𝑗 ≤ 𝑟
∞, 𝑖𝑓 𝑗 = 0 𝑎𝑛𝑑 𝑖 > 𝑟
0, 𝑖𝑓 𝑗 = 0 𝑎𝑛𝑑 𝑖 ≤ 𝑟

 (3) 

After this initialization, the recurrence relation to fill the matrix is 

unchanged; it is exactly the same as defined by Equation 2. 

Finally, the ultimate distance estimate is not necessarily obtained 

by retrieving the value in 𝑑𝑡𝑤(𝑛, 𝑚). This minor modification can 

be directly obtained by the definition of the proposed relaxed 

endpoint constraint. Formally, the final distance calculation is 

given by Equation 4. 

 𝜓 − 𝐷𝑇𝑊(𝑥, 𝑦, 𝑟) = min
(𝑖,𝑗)∈𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑡

[𝑑𝑡𝑤(𝑖, 𝑗)] , 

𝑓𝑖𝑛𝑎𝑙𝑆𝑒𝑡 = {(𝑛 − 𝑐, 𝑚)} ∪ {(𝑛, 𝑚 − 𝑐)} ∀ 𝑐 ∈ [0, 𝑟].  
(4) 
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The algorithm to calculate ψ-DTW is simple. For concreteness, 

Table 1 describes it in detail. 

Table 1. ψ-DTW algorithm 

Procedure ψ-DTW(x,y,r) 
Input: Two user provided time series, x and y and the relaxation factor 
parameter r 
Output: The ψ-DTW distance between x and y 

1 

2 

3 

4 

5 

6 

7 

8 

9 

n←length(x), m←length(y) 
M ← infinity_matrix(n+1,m+1) 
M([0,r],0) ← 0 
M(0,[0,r]) ← 0 

for i  ← 1 to n 
    for j  ← 1 to m 
        M(i,j) ← c(xi,yj) + min(M(i-1,j-1),M(i,j-1), M(i-1,j)) 
minX ← min(M([n-r,n],m)), minY ← min(M(n,[m-r,m])) 
return min(minX,minY) 

 

The algorithm starts by defining the variables used to access the 

length of time series (line 1) and the DTW matrix according to 

Equation 3 (lines 2 to 4). The for loops (lines 5 to 7) fill the matrix 

according to the recurrence relation defined in Equation 2. Finally, 

the algorithm finds the minimum value in the region defined by the 

new endpoint constrained and returns it as the distance estimate 

(lines 8 and 9). To implement the constrained warping version of 

this algorithm, one only needs to modify the interval of the second 

for loop (line 6) according to the constraint definition. 

Note that the proposed method is a generalization of DTW, thus it 

is possible to obtain the classic DTW by our method. Specifically, 

if 𝑟 = 0, the final result of our algorithm is exactly the same as the 

classic DTW. 

6. Experimental Evaluation 
We begin this section by reviewing our experimental philosophy. 

We are committed to reproducibility, thus we have made available 

all the source code, datasets, detailed results and additional 

experiments in a companion website for this work [21]. In addition 

to reproducing our experiments, the interested reader can use our 

code on their own datasets. We implemented all our ideas in 

Matlab, as it is ubiquitous in the data mining community. 

To test the robustness of our method, we compare its performance 

against the accuracy obtained by the classic, unconstrained DTW. 

In addition, we present results obtained using constrained-warping. 

We refer to the constrained versions of the algorithms with names 

containing the letter c. Specifically, cDTW refers to the DTW with 

warping constraint. Similarly, ψ-cDTW stands for the constrained 

version of ψ-DTW. 

We are not directly interested in studying the effect of warping 

window width on classification accuracy. The value of the warping 

window width parameter has been shown to greatly affect accuracy, 

but it has also been shown to be easy to learn a good setting for this 

parameter with cross validation [17][26][28]. For simplicity, we 

fixed it as 10% of the length of the query time series by default.  

However, this setting limits the choice of the relaxation factor to ψ-

DTW. For any relaxation factor that is greater than or equal to the 

warping length, the distance is the same. For this reason, when we 

wanted to test the effect of larger relaxation factors, the warping 

window used in the experiment was set by the same value as 𝑟. 

We divide our experimental evaluation into two sections.  

 In order to clearly demonstrate that our algorithm is doing 

what we claim it can, we take perfectly cropped time series 

data and add increasing amounts of spurious endpoint data. 

This experiment simulates the scenario in which the 

segmentation of time series is not perfect, i.e., there are 

endpoints that may represent random behaviors.  

 The experiments above will be telling, but unless real datasets 

have the spurious endpoint problem, they will be of little 

interest to the community. Thus, we apply ψ-DTW on real 

datasets that we suspect have a high probability of the 

presence of spurious endpoints.  

For clarity of presentation, we have confined this work to the single 

dimensional case. However, our proposal can be easily generalized 

to multidimensional data. 

6.1 The Effect of ψ-DTW on Different 

Lengths of Endpoints 
As noted above, the UCR Time Series Archive has been useful to 

the community working on time series classification [4]. However, 

in general, the highly contrived procedures used to collect and/or 

clean most of the datasets prevent the appearance of prefixes and 

suffixes (recall Figure 3). For this reason, the impact of endpoints 

cannot be directly evaluated by the use of such datasets. 

However, such “endpoint-free” data create a perfect starting point 

to understand how different amounts of uninformative data can 

affect both DTW and ψ-DTW. To see this, we consider some 

datasets that are almost certainly free of specious prefix or suffix 

information. To these we prepend and postpend random walk 

subsequences with length varying from 0% to 50% of the original 

data. Next, we compared the accuracy obtained using the nearest 

neighbor classification on the modified datasets using both DTW 

and ψ-DTW. At each length of added data, we average over three 

runs with newly created data. 

At this point, we are not learning the parameter 𝑟. Instead, we fixed 

both the relaxation factor and warping constraint length as 10% of 

the time series being compared. 

Intuitively, as we add more and more spurious data, we expect to 

see greater and greater decreases in accuracy. However, we expect 

that ψ-DTW degrades slower. In fact, this is the exact behavior 

observed in our experiments. Figure 9 shows the results on the 

Cricket X dataset. 

 

Figure 9. The accuracy after padding the Cricket X dataset 

with increasing lengths of random walk data. When no such 

spurious data is added, the accuracy obtained by the classic 

DTW is very slightly better. As we encounter increasing 

amounts of spurious data, ψ-DTW and ψ-cDTW degrade less 

than DTW and cDTW 

For brevity, here we show the results on only one dataset. However, 

we note that this result describes the general behavior of the results 

obtained in other datasets. We invite the interested reader to review 

some additional experiments in our website [21]. 

6.2 Case Studies 
In the previous experiment, we showed the robustness of ψ-DTW 

in the presence of spurious prefix and suffix information in 

artificially contrived time series data. In this section, we evaluate 

our method on real data. 

y-cDTW

y-DTW

DTW

cDTW

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

Relative length of added random walk

A
c
c
u
ra

c
y



The datasets we consider were extracted in a scenario in which we 

do not have perfect knowledge or control over the events' 

endpoints. In some cases, the original datasets were obtained by 

recording sessions similar to the Gun-Point dataset (c.f. Section 2), 

in which the invariance to endpoints is enforced by the data 

collection procedure. In this case, we model the real world 

conditions by ignoring the external cues or annotations. In 

particular, we simulated a randomly-ordered stream of events 

followed by a classic subsequence extraction step. For this phase, 

we considered the simple sliding window approach. For additional 

details on the extraction phase, please refer to [21].  

In keeping with common practice, we adopted the use of 

dictionaries as training data. A data dictionary is a subset of the 

original training set containing only its most relevant examples. 

The utility of creating dictionaries is two-fold [8]: it makes the 

classifier faster and the accuracy obtained by dictionaries is 

typically better than that obtained by using all the data, which may 

contain outliers or mislabeled data.  

To compute the relevance of training examples to the classification 

task, we used the SimpleRank function [26]. This function returns 

a ranking of exemplars according to their estimated contribution to 

the classification accuracy. Then, we selected the top-k time series 

of each class in the dictionary, with k empirically discovered for 

each dataset. 

The main intuition behind SimpleRank is to define a score for each 

exemplar based on its “neighborhood.” For each exemplar 𝑡𝑗, its 

nearest neighbor 𝑠 is “rewarded” if it belongs to the same class, i.e., 

𝑠 is used to correctly classify 𝑡𝑗. Otherwise, 𝑠 is “penalized” by 

having its score decreased. Equation 5 formally defines the 

SimpleRank function. 

 

𝑟𝑎𝑛𝑘(𝑠) =  ∑ {

1, 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑠) = 𝑐𝑙𝑎𝑠𝑠(𝑡𝑗)

−
2

num_classes −  1
, otherwise

𝑗

 (5) 

The length of subsequences and the size of the dictionary for each 

dataset were chosen in order to obtain the best accuracy in the 

training set by using constrained DTW. In addition, the 

SimpleRank used to construct the dictionaries was also 

implemented by using the classic constrained DTW instead of the 

distance measure proposed in this work. This was done to ensure 

we are not biasing our experimental analysis in favor of our 

method.  

6.2.1 Motor Current Data 
Our first case study considers electric motor current signals. This 

dataset has long been a staple of researchers interested in 

prognostics and novelty detection [14]. We refer the reader 

interested in the procedure to generate such data to [6]. 

The data in question includes 21 classes representing different 

operating conditions. In addition, a class that represents to (a slight) 

diversity of healthy operation, the other classes represent different 

defects in the apparatus (in particular, one to ten broken bars and 

one to ten broken end-ring connectors). 

The original data used in this study is segmented, but with no 

attention paid to avoiding suffix or prefix inconsistences. 

Therefore, in this case, we did not use the approach of simulating a 

data stream. We segmented the original time series using a static 

window placed in the middle of each time series. With this 

procedure, the signals have different endpoints in each different 

length we consider. Figure 10 shows the classification results. 

 

Figure 10. Classification results obtained by varying the time 

series length on the Motor Current dataset 

Given that this dataset is a very clear case of badly-defined 

endpoints, these results show the robustness of our proposal.  Over 

all lengths we experimented with, ψ-DTW beats DTW by a large 

margin. Specifically, ψ-DTW can achieve accuracy rates as high as 

40% while the best result achieved by the classic DTW is lower 

than 12%. 

6.2.2 Robot Surface and Activity Identification 
In this case study, we consider the classification of signals collected 

by the accelerometer embedded in a Sony ERS-210 Aibo Robot 

[27]. This robot is a dog-like model equipped with a tri-axial 

accelerometer to record its movements. 

Using the streaming data sets collected by this robot, we evaluated 

the classification accuracy in two different scenarios: surface and 

activity recognition. In the former scenario, the goal is to identify 

the type of surface in which the robot is walking on. Specifically, 

the target classes for this problem are carpet, field, and cement. 

Figure 11 shows the results for this dataset. 

 

Figure 11. Classification results obtained by varying the time 

series length on the Sony AIBO Robot Surface dataset 

In the second scenario, the aim is the identification of the activity 

performed by the robot. In this case, the target classes are the robot 

playing soccer, standing in a stationary position, trying to walk with 

one leg hooked, and walking straight into a fixed wall. Figure 12 

shows the results obtained in this scenario. 

 

Figure 12. Classification results obtained by varying the time 

series length on the Sony AIBO Robot Activity dataset 

In both scenarios evaluated in this study, the results obtained by ψ-

DTW are generally better than the classic DTW. However, there is 

an important caveat to discuss. Despite the improvements in 

accuracy in most time series lengths, the accuracy obtained by ψ-

DTW was the same or slightly worse than the performance of the 

classic DTW in a few experiments. This happened because our 

procedure to learn the relaxation factor was not able to find a more 

y-DTW

y-cDTW

DTW

1100 1200 1300 1400 1500
0.05

0.15

0.25

0.35

0.45

Time Series Length

A
c
c
u
ra

c
y

cDTW

150 200 250 300 350
0.75

0.8

0.85

0.9

0.95

Time Series Length

A
c
c
u
ra

c
y

y-cDTW

y-DTW

DTW

cDTW

150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

Time Series Length

A
c
c
u
ra

c
y

y-cDTW

y-DTW

DTW

cDTW



suitable value in these cases. Even in these cases, the poor choice 

of 𝑟 did not significantly affect the classification accuracy. Even so, 

these results highlight the importance of the parameter learning 

procedure, which we describe in detail in Section 6.3. 

6.2.3 Gesture Recognition 
Gesture recognition is one of the most studied tasks in the time 

series classification literature. The automatic identification of 

human gestures has become an increasingly popular mode of 

human-computer interaction.  

In this study, we used the Palm Graffiti Digits dataset [1], which 

consists of recordings of different subjects “drawing” digits in the 

air while facing a 3D camera. The goal of this task is the 

classification of the digits drawn by the subjects. Figure 13 shows 

the results. 

 

Figure 13. Classification results obtained by varying the time 

series length on the Palm Graffiti Digits dataset 

Similar to our findings with the robot data, the accuracy rates 

obtained by our proposal are usually better than the obtained by the 

classic DTW. In few cases, the accuracy is slightly worse. 

However, most important is the robustness of ψ-DTW to the cases 

where the prefixes and suffixes seem to significantly affect the 

classification. For instance, there is an expressive loss of accuracy 

obtained by the classic DTW in the dataset containing time series 

with 150 observations. The lost is notably less drastic when we 

using ψ-DTW. 

6.2.4 Sign Language Recognition 
Another specific scenario with gesture data used in this work is the 

recognition of sign language. A sign language is an alternative way 

to communicate by gestures and body language that replace (or 

augment) the acoustic communication. In this work we used a 

dataset of Australian Sign Language (AUSLAN) [9]. The original 

dataset is composed of signs separately recorded in different 

sections. We used 10 arbitrarily chosen signs of each recording 

session displaced as a data stream. Figure 14 shows the results. 

 

Figure 14. Classification results obtained by varying the time 

series length on the AUSLAN dataset 

In contrast to the previous gesture recognition case, the accuracies 

obtained by relaxing the endpoint constraint are always better for 

this dataset. More importantly, the best accuracy rates were 

significantly superior when using ψ-DTW. 

6.2.5 Human Activity Recognition 
Due to the growth in the use of mobile devices containing 

movement sensors (such as accelerometers and gyroscopes), there 

is also a notable increase in the interest of human activity analyses 

using this kind of equipment.  

In this final case study, we investigate the robustness of ψ-DTW in 

the recognition of human activities using smartphone 

accelerometers. For this purpose, we used a the dataset that first 

appeared in [2]. Originally, the recordings are composed of 128 

observations of three coordinates of the device’s accelerometers. In 

our study, we used the x-coordinate disposed in a streaming 

fashion. Figure 15 shows the results. 

 

Figure 15. Classification results obtained by varying the time 

series length on the Human Activity Recognition dataset 

Again, the accuracy obtained by ψ-DTW is better than the obtained 

by the classic DTW in all the cases for this dataset. This success of 

these results is due to, in part, to a good choice of value to the 

relaxation factor. This is the main topic of the following section. 

6.3 On Learning the Relaxation Factor  
The choice of the method to learn a value to set the parameter 𝑟 

may be a critical step to the use of ψ-DTW. For this reason, we 

devote this section to discuss this topic in details. 

We start by demonstrating the sensitivity of ψ-DTW to the 

relaxation factor. In this experiment, we executed the classification 

of five random test sets for each dataset used as a study case. For 

each execution, we annotated the best and worst result, i.e., the 

accuracy obtained by the best and the worst choice of 𝑟. Figure 16 

shows these results on the AUSLAN dataset. In this case, we can 

see that a bad choice of 𝑟 always results in worse accuracy rates 

than the classic DTW. On the other hand, a good choice will 

improve the classification accuracy in all the cases. The goal of 

learning the relaxation factor is to approximate as much as possible 

to the best case. 

 

Figure 16. Accuracies obtained in the AUSLAN dataset by the 

best and worst values of relaxation factor 

For some datasets, such as Motor Current, a poor choice of 𝑟 does 

not result in worse accuracy than the classic DTW. In fact, the worst 

case for any time series length in this dataset is given by choosing 

𝑟 = 0, i.e., the classic DTW. However, the optimal choice of 

parameter value has a highly positive impact on the classification. 

In our experiments, we experimented with a wide range of possible 

values to 𝑟. We set 𝑟 as a relative value to the length of the time 

series under comparison. Specifically, we used a set of values 𝑟𝑙𝑟 ∈
{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}, such that 𝑟 =
⌈𝑛 ∗ 𝑟𝑙𝑟⌉, where 𝑛 is the length of the time series.  
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We limited the value of 𝑟 to be at most half the number of 

observations of the time series in order to avoid meaningless 

alignments, such as the ones obtained by OBE-DTW in the example 

illustrated in Figure 7. Considering the same time series of that 

example, if we have decided to use 𝑟𝑙𝑟 = 𝑝%, ∀ 𝑝 ∈ [0,100], 
exactly 𝑝% of the values of the time series would be ignored. 

Besides defining a range of values to evaluate, we need to define a 

procedure to perform such evaluation. The first obvious choice is 

to use the same training data and compute the accuracy obtained by 

different values of the parameter by applying a cross-validation or 

a leave-one-out procedure. 

However, recall that we are using dictionaries as training data. Note 

that the choice of the size of the dictionary is a crucial determinant 

of the time complexity of the algorithm. For this reason, the number 

of examples in the dictionary tends to be small in order to keep the 

algorithm fast, which makes learning 𝑟 difficult if we use the data 

in the dictionary exclusively. 

For clarity, we measured the accuracy obtained by learning the 

relaxation factor by varying the size of the validation set. In this 

experiment, we used the training time series outside the dictionary 

to learn the parameter. Given a choice of the validation set size, we 

randomly chose examples to compose the validation set and only 

took into account the accuracy resulted from the best choice of the 

relaxation factor. In order to avoid results obtained by chance, we 

repeated this procedure 50 times. Figure 17 illustrates an example 

of the results obtained by this procedure. 

 

Figure 17. Accuracy obtained by learning the relaxation factor 

using different sizes of validation set for Sony Aibo Robot 

Surface dataset with time series length of 250 observations 

We performed this experiment on a wide range of datasets (c.f. 

[21]). The results for all these datasets confirm the generality of the 

behavior of increasing accuracy according to the increase in the 

number of objects in the validation set. For this reason, in order to 

learn the value of 𝑟, we used a validation set containing all the 

training time series but those chosen as part of the dictionary. The 

use of the exemplars in the dictionary creates a bias for learning 

𝑟 = 0 when the nearest neighbor of a time series in the dictionary 

would be itself, independent of the relaxation factor. In this case, 

we would choose for the smallest value, i.e., 𝑟 = 0. 

7. Lower Bounding of ψ-DTW 
One of the biggest concerns while designing a new distance 

measure is time efficiency. This is more prevalent in our case since 

we are proposing a modification of Dynamic Time Warping, an 

𝑂(𝑛2) algorithm. In fact, a straightforward implementation of the 

nearest neighbor algorithm under DTW makes its use impractical 

on large datasets. For this reason, the community has proposed 

several methods to improve the efficiency of the similarity search 

under DTW. 

A recent paper on speeding-up similarity search [16] shows that the 

combination of few simple techniques makes possible to handle 

truly massive data under DTW. We claim that all these methods 

can be applied to the ψ-DTW with simple or no modifications. 

Some of the most important speed-up methods rely on the use of a 

lower bound (LB) function. A LB function returns a value certainly 

lower or equal to the true DTW between two objects. Our algorithm 

is amenable to adaptation of LB functions. 

Before explaining how to adapt LB functions to ψ-DTW, we briefly 

explain the intuition behind the use of LB on time series similarity 

search. Consider that we have a variable best-so-far that stores the 

distance to the nearest neighbor know up to the current iteration of 

the search algorithm. We can use this information to decide if we 

can avoid the expensive calculation of DTW. In order to do this, for 

each time series in the training set, we first calculate the LB of the 

distance between it and the query. Clearly, if the LB function 

returns a value greater than the best-so-far, the training object is not 

the nearest neighbor of the query. Therefore, the current object can 

be discarded before having its distance to the query estimated. We 

can extend this to a k-nearest neighbor scenario by simply replacing 

the best-so-far by the distance to the k-th nearest object known at 

that moment. 

This approach for pruning DTW calculations is only effective if the 

LB function has the following properties: (i) its calculation is fast; 

(ii) and it is tight, i.e., its value is close to the true DTW. Clearly, 

these requirements imply a tightness-efficiency trade-off. For 

instance, by simply using the value 0, we have an instantly- 

calculated LB. However, this will never prune any distance 

calculation. On the other hand, the classic DTW is also a LB 

function itself, with the exact value as the actual distance. However, 

its calculation is slow. 

Now we are in position to answer the following question. How can 

we use previously proposed LB functions with ψ-DTW? 

We first note that ψ-DTW actually lower bounds the DTW, as 

exemplified in Figure 18. From a practical standpoint, the 

alignment path that starts at the first pair of observations and 

finishes by matching the last one is a possible alignment found by 

ψ-DTW that correspond to the exact classic DTW. Any other 

alignment found is considered optimal only in the case in which it 

provides a smaller value than the one obtained by DTW. This 

situation occurs when our method disregards some pair of 

observations that contributes to the total cost of matching. 

 

Figure 18. The distance between all the pairs of fifty time series 

objects in the AUSLAN dataset sorted by their DTW distances. 

In this experiment, we used both warping constraint and 

relaxation factor as 10% of the length of time series 

For this reason, it is not possible to apply most of the known LB 

functions directly to our method. Adapting a LB function to ψ-

DTW requires the careful analysis of the possible first and last pairs 

of observations. For sake of exemplification, we will adopt the most 

widely used LB function, the LB_Keogh [10]. This LB function has 

arguably the best tightness-efficiency trade-off.  

The calculation of LB_Keogh consists of two main steps. The first 

step is the estimation of an envelope to a given query time series 𝑞 

of length 𝑛. Specifically, the envelope is composed of an upper 

sequence 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑛) and a lower sequence 𝐿 =
(𝐿1, 𝐿2, … , 𝐿𝑛) defined by Equation 6. 

 𝑈𝑖 = max
𝑖−𝑤≤𝑗≤𝑖+𝑤

(𝑞𝑗)

𝐿𝑖 = min
𝑖−𝑤≤𝑗≤𝑖+𝑤

(𝑞𝑗)
, 1 ≤ 𝑖 ≤ 𝑛 (6) 
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where 𝑤 is the length of the warping constraint window. Clearly, 

the partials 𝑖 − 𝑤 and 𝑖 + 𝑤 are restricted to the extent of the query. 

Figure 19 exemplifies the upper and lower sequences of a given 

query time series. 

 

Figure 19. Upper and lower sequences of a given query time 

series q estimated by LB_Keogh 

Once the envelope  is calculated, we are in the position to estimate 

the value of the LB function. For each time series 𝑡 to be compared 

to the query 𝑞, the value LB_Keogh is calculated as the Euclidean 

distance between the observations of 𝑡 that falls outside the 

envelope and the nearest upper or lower sequence. Formally, the 

LB_Keogh between 𝑡 and 𝑞 is defined by Equation 7. 

 

𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝑞, 𝑡) = ∑ {
(𝑡𝑖 − 𝑈𝑖)2, 𝑖𝑓  𝑡𝑖 > 𝑈𝑖

(𝐿𝑖 − 𝑡𝑖)2, 𝑖𝑓  𝑡𝑖 < 𝐿𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 (7) 

A careful reader might notice that this is the squared value of the 

original LB_Keogh. This is because the DTW defined in Section 3 

also returns the squared version of the traditional DTW. Figure 20 

illustrates this step in the comparison of the previously used query 

𝑞 and a specific time series 𝑡. 

 

Figure 20. The LB_Keogh is calculated by using the values of 

the time series t that fall outside the region bounded by the 

envelope 

The only issue in directly applying LB_Keogh to lower bound ψ-

DTW is the fact that it is constrained by the classic endpoint 

constraint of DTW. Therefore, in order to adapt LB_Keogh to our 

method, we need to relax its endpoints. Since ψ-DTW can skip the 

matching of the first and last 𝑟 observations in either 𝑞 or 𝑡, the LB 

function should ignore these values. We call the adapted LB 

function ψ-LB_Keogh, and define it formally in Equation 8. 

 

ψ − 𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝑞, 𝑡) = ∑ {
(𝑡𝑖 − 𝑈𝑖)2, 𝑖𝑓 𝑡𝑖 > 𝑈𝑖

(𝐿𝑖 − 𝑡𝑖)2, 𝑖𝑓 𝑡𝑖 < 𝐿𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛−𝑟

𝑖=𝑟+1

 (8) 

The only difference between Equations 7 and 8 is the range of 𝑖. 
Figure 21 illustrates the ψ-LB_Keogh between 𝑞 and 𝑡. 

 

Figure 21. ψ-LB_Keogh ignores the values in the dashed 

regions 

To visualize the tightness of ψ-LB_Keogh, Figure 22 shows the 

distances and their respective LB for all the pairs of objects in the 

training set of AUSLAN data. 

 

Figure 22. DTW (top) ψ-DTW (bottom) with the respective 

lower bound values, sorted by the LB 

To further demonstrate the tightness of ψ-LB_Keogh, we compared 

the tightness of ψ-LB_Keogh with that of LB_Keogh for all the 

study cases in Section 6.2. We quantified the tightness of the LBs 

by dividing them by the corresponding DTW distances. In this 

experiment, we set the warping window as 10% of the time series 

length. The relaxation factor takes the same value. Table 2 shows 

the results obtained in the training set with the shortest time series 

used in each study case.  

Table 2. Tightness of LB_Keogh and ψ-LB_Keogh 

Dataset 
Tightness of 

LB_Keogh 

Tightness of 

ψ-LB_Keogh 

AUSLAN 0.522 0.484 

Human Activity 0.173 0.152 

Motor Current 0.259 0.292 

Palm Graffiti Digits 0.549 0.490 

Sony Robot Activity 0.120 0.110 

Sony Robot Surface 0.174 0.151 

 

From these results, we can note that the tightness of both methods 

is similar. In fact, ψ-LB_Keogh is even tighter than LB_Keogh in 

one of the experimented datasets. This indicates that endpoint 

constraint relaxation does not impair the tightness of ψ-LB_Keogh.  

8. Conclusion 
In this paper, we proposed a modification of the endpoint constraint 

of DTW to make it suffix- and prefix-invariant. In addition to be 

simple and intuitive, our method is quite effective. Experimental 

results show that our method outperforms the classic DTW by a 

large margin in various datasets that contain spurious endpoints. In 

addition, we demonstrated that the distance obtained by our method 

can be tightly lower bounded by a slight modification of the current 

lower bounds of DTW, which indicates that our modified DTW is 

tractable for large datasets. 

Though the results are very promising, we believe that there is room 

for improvement. Specifically, we plan to investigate alternative 

ways to learn the relaxation factor parameter, especially when faced 

with small amounts of training data. 

Finally, for the sake of clarity and brevity in this work we only 

discussed the application of our algorithm to classification. 

However, it can also be applied to a large variety of tasks, such as 

clustering, motif discovery, outlier detection, etc. We leave those 

explorations for future work. 
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