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ABSTRACT
In the last five years there have been a large number of new
time series classification algorithms proposed in the litera-
ture. These algorithms have been evaluated on subsets of the
47 data sets in the University of California, Riverside time
series classification archive. The archive has recently been ex-
panded to 85 data sets, over half of which have been donated
by researchers at the University of East Anglia. Aspects of
previous evaluations have made comparisons between algo-
rithms difficult. For example, several different programming
languages have been used, experiments involved a single
train/test split and some used normalised data whilst others
did not. The relaunch of the archive provides a timely oppor-
tunity to thoroughly evaluate algorithms on a larger number
of datasets. We have implemented 20 recently proposed al-
gorithms in a common Java framework and compared them
against two standard benchmark classifiers (and each other)
by performing 100 resampling experiments on each of the
85 datasets. We use these results to test several hypotheses
relating to whether the algorithms are significantly more
accurate than the benchmarks and each other. Our results
indicate that only 9 of these algorithms are significantly more
accurate than both benchmarks and that one classifier, the
Collective of Transformation Ensembles, is significantly more
accurate than all of the others. All of our experiments and
results are reproducible: we release all of our code, results
and experimental details and we hope these experiments
form the basis for more rigorous testing of new algorithms
in the future.

1. INTRODUCTION
Time series classification (TSC) problems are differentiated
from traditional classification problems because the attributes
are ordered. Whether the ordering is by time or not is in
fact irrelevant. The important characteristic is that there
may be discriminatory features dependent on the ordering.
The introduction of the UCR time series classification and

clustering repository [21] saw a rapid growth in the number
of publications proposing time series classification algorithms.
Prior to the summer of 2015 over 3,000 people have down-
loaded the UCR archive and it has been referenced several
hundred times. The repository has contributed to increasing
the quality of evaluation of new TSC algorithms. Most ex-
periments involve evaluation on over forty data sets, often
with correct significance testing and most authors release
source code. This degree of evaluation and reproducibility
is generally better than most areas of machine learning and
data mining research.

However, there are still some fundamental problems with
published TSC research that we aim to address. Firstly,
nearly all evaluations are performed on a single train/test
split. This can lead to over interpreting of results. The
majority of machine learning research involves repeated re-
samples of the data, and we think TSC researchers should
follow suit. To illustrate why, consider the following anecdote.
We were recently contacted by a researcher who queried our
published results for one nearest neighbour (1-NN) dynamic
time warping (DTW) on the UCR train test splits. When
comparing our accuracy results to theirs, they noticed that in
some instances they differed by as much as 6%. Over all the
problems there was no significant difference, but clearly we
were concerned, as it is a deterministic algorithm. On further
investigation, we found out that our data were rounded to
six decimal places, there data to eight. These differences
on single splits were caused by small data set sizes and tiny
numerical differences. When resampling, there were no sig-
nificant differences on individual problems when using 6 or 8
decimal places.

Secondly, there are some anomalies and discrepancies in the
UCR data that can bias results. Not all of the data are
normalised (e.g. Coffee) and some have been normalised
incorrectly (e.g. ECG200). This can make algorithms look
better than they really are. For example, most authors cite an
error of 17.9% for the Coffee data with 1-NN DTW, and most
algorithms easily achieve lower error. However, 17.9% error
is for DTW on the non-normalised data. If it is normalised,
1-NN DTW has 0% error, a somewhat harder benchmark to
beat. ECG200 has been incorrectly formatted so that the
sum of squares of the series can classify the data perfectly. If
a classifier uses this feature it should be completely accurate.
This will be a further source of bias.



Thirdly, the more frequently a fixed set of problems is used,
the greater the danger of overfitting and detecting significant
improvement that does not generalise to new problems. We
should be constantly seeking new problems and enhancing
the repository with new data. This is the only real route to
detecting genuine improvement in classifier performance.

Finally, whilst the release of source code is admirable, the
fact there is no common framework means it is often very
hard to actually use other peoples code. We have reviewed
algorithms written in C, C++, Java, Matlab, R and python.
Often the code is“research grade”, i.e. designed to achieve the
task with little thought to reusability or comprehensibility.
There is also the tendency to not provide code that performs
model selection, which can lead to suspicions that parameters
were selected to minimize test error, thus biasing the results.

To address these problems we have implemented 20 differ-
ent TSC algorithms in Java, integrated with the WEKA
toolkit [17]. We have applied the following guidelines for the
inclusion of an algorithm. Firstly, the algorithm must have
been recently published in a high impact conference or jour-
nal. Secondly, it must have been evaluated on some subset
of the UCR data. Thirdly, source code must be available.
Finally, it must be feasible/within our ability to implement
the algorithm in Java. Often, variants of a classifier are
described within the same publication. We have limited each
paper to one algorithm and taken the version we consider
most representative of the key idea behind the approach.

We have conducted experiments with these algorithms and
standard WEKA classifiers on 100 resamples of the 85 data
sets, each of which is normalised. In addition to resampling
the data sets, we have also conducted extensive model se-
lection for many of the classifiers. This is one of the largest
ever experimental studies conducted in machine learning.
We have performed millions of experiments distributed over
thousands of nodes of a large high performance computing
facility. Nevertheless, the goal of the study is tightly fo-
cussed and limited. This is meant to act as a springboard
for further investigation into a wide range of TSC problems
we do not address. Specifically, we assume all series in a
problem are equal length, real valued and have no missing
values. Classification is offline, and we assume the cases are
independent (i.e. we do not perform streaming classification).
All series are labelled and all problems involve learning the
labels of univariate time series. We are interested in testing
hypotheses about the average accuracy of classifiers over a
large set of problems. Algorithm efficiency and scalability
are of secondary interest at this point. Detecting whether a
classifier is on average more accurate than another is only
part of the story. Ideally, we would like to know a priori
which classifier is better for a class of problem or even be
able to detect which is best for a specific data set. However,
this is beyond the scope of this paper.

Our findings are surprising, and a little embarrassing, for two
reasons. Firstly, many of the algorithms are in fact no better
than our two benchmark classifiers, 1-NN DTW and Rota-
tion Forest. Secondly, of those X significantly better than
both benchmarks, by far the best classifier is COTE [2], an
algorithm we proposed. It is on average over 8% more accu-
rate than both benchmarks. Whilst gratifying for us, we fear

that this outcome may cause some to question the validity of
the study. We have made every effort to faithfully reproduce
all algorithms. We have tried to reproduce published results,
with varying degrees of success (as described below), and
have consulted authors on the implementation where possible.
Our results are reproducible, and we welcome all input on
improving the code base. We must stress that COTE is by
no means the final solution. All of the algorithms we describe
may have utility in specific domains, and many are orders of
magnitudes faster than COTE. Nevertheless, we believe that
it is the responsibility of the designers of an algorithm to
demonstrate its worth. We think our benchmarking results
will help facilitate an improved understanding of utility of
new algorithms under alternative scenarios. The code is
freely accessible from a repository [1] and detailed results
and data sets are available from a dedicated website [3].

The rest of this paper is structured as follows. In Section 2 we
review the algorithms we have implemented. In Section 3 we
describe the data, code structure and experimental design. In
Section 4 we present and analyse the results, and in Section 5
we summarise our findings and discuss the future direction.

2. CLASSIFICATION ALGORITHMS
We denote a vector in bold and a matrix in capital bold. A
case/instance is a pair {x, y} with m observations x1, . . . , xm
(the time series) and discrete class variable y with c possible
values. A list of n cases with associated class labels is T =<
X,y >=< (x1, y1), . . . , (xn, yn) >. A classifier is a function
or mapping from the space of possible inputs to a probability
distribution over the c class variable values.

The large majority of time series research in the field of data
mining has concentrated on alternative distance measures
that can be used for clustering, query and classification. For
TSC, these distance measures are almost exclusively eval-
uated with a one nearest neighbour (1-NN) classifier. The
standard benchmark distance measures are Euclidean dis-
tance (ED) and dynamic time warping (DTW). Alternative
techniques taken from other fields include edit distance with
real penalty (ERP) and longest common subsequence (LCSS).
Three more recently proposed time domain distance mea-
sures are described in Section 2.1. DTW is by far the most
popular benchmark. It is common to put a restriction on
the amount of warping allowed. This restriction is equiva-
lent to putting a maximum allowable distance between any
pairs of indexes in a proposed path. It has been shown that
setting the proportion of warping allowed, r, through cross
validation to maximize training accuracy, as proposed in [28],
significantly increases accuracy [24]. We set r through cross
validation in all out experiments.

2.1 Time Domain Distance Based Classifiers
In 2008, Ding et al. [12] evaluated 8 different distance mea-
sures on 38 data sets and found none significantly better
than DTW. Since then, three more elastic measures have
been proposed.

Weighted DTW (WDTW) [19]. Jeong et al. describe
WDTW, which adds a multiplicative weight penalty based on
the warping distance between points in the warping path. It
favours reduced warping, and is a smooth alternative to the
cutoff point approach of using a warping window. A logistic



weight function is used, with a parameter g that controls the
penalty level for large warpings.

Time Warp Edit (TWE) [25]. Marteau proposes TWE
distance, an elastic distance metric that includes characteris-
tics from both LCSS and DTW. It allows warping in the time
axis and combines the edit distance with Lp-norms. The
warping is controlled by a stiffness parameter, ν. Stiffness
enforces a multiplicative penalty on the distance between
matched points in a manner similar to WDTW. A penalty
value λ is applied when sequences do not match.

Move-Split-Merge (MSM) [32]. Stefan et al. present
MSM distance, a metric that is conceptually similar to other
edit distance-based approaches, where similarity is calculated
by using a set of operations to transform a given series
into a target series. Move is synonymous with a substitute
operation, where one value is replaced by another. Split
and merge differ from other approaches, as they attempt to
add context to insertions and deletions. The split operation
inserts an identical copy of a value immediately after itself,
and the merge operation is used to delete a value if it directly
follows an identical value.

We have implemented WDTW, TWE, MSM and other com-
monly used time domain distance measures, which are avail-
able in the package weka.core.elastic distance measures. We
have generated results that are not significantly different to
those published when using these distances with 1-NN.

2.2 Differential Distance Based Classifiers
There are a group of algorithms that are based on the first
order differences of the series, a′i = ai−ai+1. Various methods
that have used a form of differences have been described [19],
but the most successful approaches combine distance in the
time domain and the difference domain.

Complexity Invariant distance (CID) [4]. Batista et
al. describe a means of weighting a distance measure to
compensate for differences in the complexity in the two series
being compared. Any measure of complexity can be used,
but Batista et al. recommend the simple expedient of using
the sum of squares of the first differences. If there is a large
difference in complexity between the two series then the
distance increases.

Derivative DTW (DDDTW ) [14]. Górecki and  Luczak
describe an approach for using a weighted combination of raw
series and first-order differences for NN classification with
either the Euclidean distance or full-window DTW. They
find the DTW distance between two series and the two differ-
enced series. These two distances are then combined using a
weighting parameter α. Parameter α is found during training
through a leave-one-out cross-validation on the training data.
This search is relatively efficient as different parameter values
can be assessed using pre-computed distances. An optimisa-
tion to reduce the search space of possible parameter values
is proposed in [14]. However, we could not recreate their
results using this optimisation. We found that if we searched
through all values of α in the range of [0, 1] in increments of
0.01, we were able to recreate the results exactly. Testing is
then performed with a 1-NN classifier using the combined
distance function.

Derivative Transform Distance (DTDC) [15]. Górecki
and  Luczak proposed an extension of DDDTW that uses
DTW in conjunction with derivatives and transforms. They
propose and evaluate combining DDDTW with distances on
data transformed with the sin, cosine and Hilbert transform.
We implement the cosine version. Distances in time do-
main, difference and cosine are combined with two weighting
parameters, α and β.

DDDTW was evaluated on single train test splits of 20 UCR
datasets, CIDDTW on 43 datasets and DTDC on 47. We
can recreate results that are not significantly different to
those published for all three algorithms. All papers claim
superiority to DTW. The small sample size for DDDTW

makes this claim debatable, but the published results for
CIDDTW and DTDC are both significantly better than DTW.
On published results, DTDC is significantly more accurate
than CIDDTW and CIDDTW is significantly better than
DDDTW .

2.3 Dictionary Based Classifiers
Dictionary based approaches approximate and reduce the
dimensionality of series by transforming them into repre-
sentative words, then basing similarity on comparing the
distribution of words. The core process of dictionary ap-
proaches involves forming words by passing a sliding window,
length w, over each series, approximating each window to pro-
duce l values, and then discretising these values by assigning
each a symbol from an alphabet of size α. The occurrence of
words is used to form histograms that are then representative
of series or classes. The parameters are set through cross
validation.

Bag of Patterns (BOP) [23]. BOP is a dictionary classi-
fier built on the Symbolic Aggregate Approximation (SAX)
method for converting series to strings [22]. SAX reduces
the dimension of a series through Piecewise Aggregate Ap-
proximation (PAA) [8], then discretises the series into bins
formed from equal probability areas of the Normal distribu-
tion. BOP works by applying SAX to each window to form a
word. If consecutive windows produce identical words, then
it is deemed a trivial match and only the first of that run
is recorded. The distribution of words over a series forms
a count histogram. New cases are classified with a 1-NN
Euclidean distance classifier applied to the histograms.

Symbolic Aggregate Approximation - Vector Space
Model (SAXVSM) [31]. SAXVSM combines the SAX
representation used in BOP with the vector space model
commonly used in Information Retrieval. The key differences
between BOP and SAXVSM is that SAXVSM forms word
distributions over classes rather than series and weights these
by the term frequency/inverse document frequency (tf · idf).
For SAXVSM, term frequency refers to the number of times
a word appears in a class and document frequency means
the number of classes a word appears in. Predictions are
made using a 1-NN classification based on the word frequency
distribution of the new case and the tf · idf vectors of each
class. Cosine similarity measure is used.

Bag of SFA Symbols (BOSS) [30]. BOSS also uses
windows to form words over series, but it has several major
differences to BOP and SAXVSM. Primary amongst these



is that BOSS uses a truncated Discrete Fourier Transform
(DFT) instead of a PAA on each window; the truncated series
is discretised through a technique called Multiple Coefficient
Binning (MCB), rather than using fixed intervals; and BOSS
ensembles alternative versions of the base algorithm. MCB
finds the disretising break points as a preprocessing step
by estimating the distribution of the Fourier coefficients.
This is performed by segmenting the series, performing a
DFT, then finding breakpoints for each coefficient so that
each bin contains the same number of elements. BOSS then
involves similar stages to BOP; it windows each series to
form word distribution through the application of DFT and
discretisation by MCB. A bespoke distance function is used
for nearest neighbour classification. This non symmetrical
function only includes distances between frequencies of words
that actually occur within the first histogram passed as an
argument. BOSS also includes a parameter that determines
whether the subseries are normalised or not.

DTW Features (DTWF ) [20]. Kate proposes a feature
generation scheme that combines DTW distances to training
cases and SAX histograms. A training set with n cases is
transformed into a set with n features, where feature xij is
the full window DTW distance between case i and case j. A
further n features are then created. These are the optimal
window DTW distance between cases. Finally, SAX word
frequency histograms are created for each instance using the
BOP algorithm. These al features are concatenated with
the 2n full and optimal window DTW features. The new
data set is trained with a support vector machine with a
polynomial kernel with order either 1, 2 or 3, set through
cross validation. DTW window size and SAX parameters are
also set independently through cross validation with a 1-NN
classifier.

BOP and SAXVSM were evaluated on the 20 and 19 UCR
problems respectively. All algorithms used the standard sin-
gle train/test split. BOSS presents results on an extended set
of 58 data sets from a range of sources, DTWF uses 47 UCR
data. On the 19 data sets they all have in common, BOP is
significantly worse than BOSS and SAXVSM. There is no
significant difference between DTWF, BOSS and SAXVSM.
Furthermore, there is no significant difference between BOSS
and DTWF on the 44 datasets they have in common. Our
BOP and DTWF results are not significantly different to the
published ones. We were unable to reproduce as accurate re-
sults as published for SAXVSM and BOSS. On examination
of the implementation for SAXVSM provided online and by
correspondence with the author, it appears the parameters
for the published results were obtained through optimisa-
tion on the test data. Our results for BOSS are on average
approximately 1% worse than those published, a significant
difference. Correspondence with the author and examination
of the code leads us to believe this is because of a versioning
problem that meant that the normalisation parameter was
set to minimize test data error rather than train error. This
would introduce significant bias.

2.4 Shapelet Based Classifiers
Shapelets are time series subseries that are discriminatory
of class membership. They allow for the detection of phase-
independent localised similarity between series within the
same class. The original shapelets algorithm by Ye and

Keogh [33] uses a shapelet as the splitting criterion for a
decision tree. There have been three recent advances in using
shapelets.

Fast Shapelets (FS) [27]. Rakthanmanon and Keogh pro-
pose an extension of the decision tree shapelet approach [33,
26] that speeds up shapelet discovery. Instead of a full enu-
merative search at each node, the fast shapelets algorithm
discretises and approximates the shapelets. Specifically, for
each possible shapelet length, a dictionary of SAX words is
first formed. The dimensionality of the SAX dictionary is
reduced through masking randomly selected letters (random
projection). Multiple random projections are performed, and
a frequency count histogram is built for each class. A score
for each SAX word can be calculated based on how well these
frequency tables discriminate between classes. The k-best
SAX words are selected then mapped back to the original
shapelets, which are assessed using information gain in a way
identical to that used in [33].

Shapelet Transform (ST) [18, 7]. Hills et al. describe
the shapelet transformation that separates the shapelet dis-
covery from the classifier by finding the top k shapelets on a
single run (in contrast to the decision tree, which searches for
the best shapelet at each node). The shapelets are used to
transform the data, where each attribute in the new dataset
represents the distance of a series to one of the shapelets.
We use the most recent version of this transform [7] that
balances the number of shapelets per class and evaluates
each shapelet on how well it discriminates just one class.
Following [2, 7] we construct a classifier from the shapelet
transformed dataset using a weighted ensemble of standard
classifiers. We include k Nearest Neighbour (where k is set
through cross validation), Naive Bayes, C4.5 decision tree,
Support Vector Machines with linear and quadratic basis
function kernels, Random Forest (with 500 trees), Rotation
Forest (with 50 trees) and a Bayesian network. Each classifier
is assigned a weight based on the cross validation training
accuracy, and new data (after transformation) are classified
with a weighted vote. With the exception of k-NN, we use
default parameters for these classifiers.

Learned Shapelets (LS) [16]. Grabocka et al. describe a
shapelet discovery algorithm that adopts a heuristic gradient
descent shapelet search procedure rather than enumeration.
LS finds k shapelets that, unlike the alternatives, are not
restricted to being subseries in the training data. The k
shapelets are initialised through a k-means clustering of
candidates from the training data. The objective function
for the optimisation process is a logistic loss function (with
regularization term) L based on a logistic regression model
for each class. The algorithm jointly learns the weights for
the regression W, and the shapelets S in a two stage iterative
process to produce a final logistic regression model. A check
is performed at certain intervals as to whether divergence
has occurred. This is defined as a train set error of 1 or
infinite loss. The check is performed when half the number
of allowed iterations is complete. This criteria meant that for
some problems, LS never terminated during model selection.
Hence we limited the the algorithm to a maximum of five
restarts.

FS, LS and ST were evaluated on 33, 45 and 75 data sets



respectively. We can reproduce results that are not signifi-
cantly different to FS and ST. The published results for FS
are significantly worse than those for LS and ST. There is
no significant difference between the LS and ST published
results. We can reproduce the output of the code released for
LS but are unable to reproduce the actual published results.
The author of LS believes the difference is caused by the fact
we have not included the adaptive learning rate adjustment
implemented through Adagrad. We are working with him to
include this enhancement.

2.5 Interval Based Classifiers
A family of algorithms derive features from intervals of each
series. For a series of length m, there are m(m−1)/2 possible
contiguous intervals. The two key decisions about using this
approach are, firstly, how to deal with the huge increase in
the dimension of the feature space and secondly, what to
actually do with each interval. Rodriguez et al. [29] were the
first to adopt this approach and address the first issue by
using only intervals of lengths equal to powers of two and
the second by calculating binary features over each intervals
based on threshold rules on the interval mean and standard
deviation. A support vector machine is then trained on this
transformed feature set. This algorithm was a precursor to
three recently proposed interval based classifiers that we have
implemented.

Time Series Forest (TSF) [11]. Deng et al. [11] overcome
the problem of the huge interval feature space by employing
a random forest approach, using summary statistics (mean,
standard deviation and slope) of each interval as features.
Training a single tree involves selecting

√
m random intervals,

generating the mean, standard deviation and slope of the
random intervals then creating and training a tree on the
resulting 3

√
m features. Classification is by a majority vote of

all the trees in the ensemble. A classification tree that has two
bespoke characteristics is defined in [11]. Firstly, rather than
evaluate all possible split points to find the best information
gain, a fixed number of evaluation points is pre-defined. We
assume this is an expedient to make the classifier faster,
as it removes the need to sort the cases by each attribute
value. Secondly, a refined splitting criteria to choose between
features with equal information gain is introduced. This is
defined as the distance between the splitting margin and
the closest case. The intuition behind the idea is that if
two splits have equal entropy gain, then the split that is
furthest from the nearest case should be preferred. This
measure would have no value if all possible intervals were
evaluated because by definition the split points are taken as
equi-distant between cases. We experimented with including
these two features, but found the effect on accuracy was, if
anything, negative. We found the computational overhead
of evaluating all split points acceptable, hence we had no
need to include the margin based tie breaker. We used the
built in Weka RandomTree classifier (which is the basis for
the Weka RandomForest classifier) with default parameters.
This means there is no limit to the depth of the tree nor a
minimum number of cases per leaf node.

Time Series Bag of Features (TSBF) [6]. TSBF is an
extension of TSF that has multiple stages. There are some
aspects of TSBF we do not have space to fully explain. How-
ever, the description captures the essential features. The first

stage involves generating a subseries classification problem.
This involves selecting random subseries, then finding sum-
mary statistics (mean, standard deviation and slope) over
intervals of each subseries. If w subseries are are selected
the internal classification problem will have w · n cases. A
random forest classifier is trained on this new problem. The
out of bag error of this classifier is used to form a probability
distribution over the c possible class values for each w ·n case.
These probabilities are discretised into equal width bins. A
bag of features for each original instance is formed from
these discretised words, giving a count histogram for each
case. Finally, a random forest classifier is built on the bag of
features representation. New cases are classified by following
the same stages of transformation and internal classification.
The number of subseries and the number of intervals are
determined by a parameter, z. Training involves searching
possible values of z for the one that minimizes the out of bag
error for the final classifier. Other parameters are fixed for
all experiments.

Learned Pattern Similarity (LPS) [5]. LPS was de-
veloped by the same research group as TSF and TSBF at
Arizona State University. It is also based on intervals, but
the main difference is that subseries become attributes rather
than cases. Like TSBF, building the final model involves first
building an internal predictive model. However, LPS cre-
ates an internal regression model rather than a classification
model. The internal model is designed to detect correlations
between subseries, and in this sense is an approximation of
an autocorrelation function. LPS selects random subseries.
For each location, the subseries in the original data are con-
catenated to form a new attribute. The process is repeated
and the first order difference of the subseries is used. The
internal model selects a random attribute as the response
variable then constructs a regression tree. A collection of
these regression trees are processed to form a new set of
instances based on the counts of the number of subseries
at each leaf node of each tree. There are two versions of
LPS available, both of which aim to avoid the problem of
generating all possible subseries. The R and C version cre-
ates the randomly selected attribute at Stage 1 on the fly at
each level of the tree. This avoids the need to generate all
possible subseries, but requires a bespoke tree. The second
implementation (in Matlab) fixes the number of subseries to
randomly select for each tree. Experiments suggest there is
little difference in accuracy between the two approaches. We
adopt the latter algorithm because it allows us to use the
Weka RandomRegressionTree algorithm, thus simplifying the
code and reducing the likelihood of bugs.

TSF and TSBF were evaluated on the original 47 UCR
problems, LPS on an extended set of 75 data sets first used
in [24] using the standard single train/test splits. The ranks
of the published results show that although TSBF has the
highest average rank, there is no significant difference between
the classifiers at the 5% level. Pairwise comparisons yield no
significant difference between the three.

We can reproduce results that are not significantly different
to those published for TSF and LPS. Our TSBF results
are significantly worse than those published. The mean
difference is just over 1%. TSBF is a complex algorithm, and
it is possible there is a mistake in our implementation, but our



best debugging efforts were not able to find one. It may be
caused by a difference in the random forest implementations
of R and Weka or by an alternative model selection method.

2.6 Ensemble Classifiers
Ensembles have proved popular in recent TSC research and
are highly competitive with general classification problems.
TSF, TSBF and BOSS are ensembles based on the same
core classifier. Other approaches, such as the ST ensemble
described in Section 2.4, use different classifier components.
Two other recently proposed heterogenous TSC ensembles
are as follows.

Elastic Ensemble (EE) [24]. The EE is a combination of
nearest neighbour (NN) classifiers that use elastic distance
measures. Lines and Bagnall [24] show that none of the
individual components of EE significantly outperforms DTW.
However, we demonstrate that by combining the predictions
of 1-NN classifiers built with these distance measures and us-
ing a voting scheme that weights according to cross-validation
training set accuracy, we can significantly outperform DTW.
The 11 classifiers in EE are 1-NN with Euclidean distance,
DTW (full and CV window), derivative DTW (full and CV
window), WDTW and derivative weighted DTW [19], LCSS,
Edit Distance with Real Penalty, TWE distance [25], and
MSM distance metric [32].

Collective of Transformation Ensembles (COTE) [2].
Bagnall et al. propose the meta ensemble COTE, a com-
bination of classifiers in different transformation domains.
The components of EE and ST are pooled with classifiers
built on a version of autocorrelation transform (ACF) and
power spectrum (PS) transform. EE uses the 11 classifiers
described above. ACF and PS employ the same 8 classifiers
used by with the shapelet transform (see Section 2.4). We use
the classifier called flat-COTE in [2]. This involves pooling
all 35 classifiers into a single ensemble with votes weighted
by train set cross validation accuracy.

We have grouped the algorithms for clarity, but the classifi-
cations are overlapping. For example, TSBF is an interval
based and ensemble based approach and LPS is based on
auto-correlation. Table 1 gives the break down of algorithm
verses approach.

There are many other approaches that have been proposed
that we have not included due to time constraints and fail-
ure to meet our inclusion criteria. Two worthy of men-
tion are Silva et al.’s Recurrence Plot Compression Distance
(RPCD) [9] and Fulcher and Jones’s feature-based linear
classifier (FBL) [13]. RPCD involves trsansforming each
series into a 2 dimensional recurrence plot then measuring
similarity based on the size of the MPEG1 encoding of the
concatenation of the resulting images. We were unable to
find a working Java based MPEG1 encoder, and the tech-
nique seems not to work with the MPEG4 encoders we tried.
FBL involves generating a huge number of possible features
which are filtered with a forward selection mechanism for
a linear classifier. The technique utilises built in matlab
functions to generate thousands of features. Unfortunately
these functions are not readily available in Java, and we
considered it infeasible to attempt such as colossal task.

Table 1: A summary of algorithms and the com-
ponent approaches underlying them. Approaches
are nearest neighbour classification (NN), time do-
main distance function (time), derivative based dis-
tance function (deri), shapelet based (shpt), in-
terval based (int), dictionary based (dict), auto-
correlation/spectral based (auto) and ensemble
(ens)

NN time deri shpt int dict auto ens
WDTW x x
TWE x x
MSM x x
CID x x x

DDDTW x x x
DTDC x x x
ST x x
LS x
FS x
TSF x x
TSBF x x
LPS x x x x
BOP x x

SAXVSM x x
BOSS x x x x
DTWF x x x x

EE x x x x
COTE x x x x x x

3. DATA AND EXPERIMENTAL DESIGN
The 85 datasets are described in detail on the website [3].
The collection is varied in terms of data characteristics: the
length of the series ranges from 24 (ItalyPowerDemand) to
2709 (HandOutlines); train set sizes vary from 16 to 8926;
and the number of classes is between 2 and 60. The data are
from a wide range of domains, with an over representation of
image outline classification problems (29 problems). Other
categories are sensor readings (16), motion capture (14), food
spectrographs (7), ECG measurements (7), electric device
profiles (6) and simulated data (6). Four of the spectrographs
data sets have not been used for TSC before: Ham; Meat;
Strawberry; and Wine. These were all created by the Insti-
tute of Food Research, part of the Norwich Research Park,
as were the three spectra data already in the UCR (Beef,
Coffee and OliveOil).

We run the same 100 resample folds on each problem for
every classifier. The first fold is always the original train test
split. The other resamples are stratified to retain class dis-
tribution in the original data sets. These resample datasets
can be exactly reproduced. Each classifier must be built
and evaluated 8,500 times. Model selection is repeated on
every training set fold. We searched the parameter value
spaces defined in the relevant publication as closely as pos-
sible. The parameter values we search are available in the
longer version of this paper [3]. We allow each classifier a
maximum 100 parameter values, each of which we assess
through a cross validation on the training data. The num-
ber of cross validation folds is dependent on the algorithm.
This is because the overhead of the internal cross validation
differs. For the distance based measures it is as fast to do
a leave-one-out cross validation as any other. For others we
need a new model for each set of parameter values. This
means we need to construct 850,000 models for each classifier.
When we include repetitions caused by bugs, we estimate we



have conducted over 30 million distinct experiments over six
months.

The datasets vary greatly in size. We have had to sub-sample
the eight largest data sets for the model selection stages, in
particular for the slower algorithms such as ST, LPS and
BOSS. Full details of the sampling performed are in the code
documentation. We follow the basic methodology described
in [10] when testing for significant difference between two
or more classifiers. Our main focus of interest is relative
performance over multiple data sets. Hence, we average
accuracies over all 100 resamples, then compare classifiers
by ranks using the Friedman test and a post-hoc pairwise
Nemenyi test to discover where the differences lie.

4. RESULTS
Due to space constraints, we present an analysis of our results
rather than tabulate the full data. All of our results and
spreadsheets to derive the graphs are available from [3].

4.1 Benchmark Classifiers
We believe that newly proposed algorithms should add some
value in terms of accuracy or efficiency over sensible stan-
dard approaches which are generally much simpler and better
understood. The most obvious starting point for any clas-
sification problem is to use a standard classifier that treats
each series a vector. Some characteristics that make TSC
problems hard include having few cases and long series (large
number of attributes), many of which are redundant or cor-
related. These are problems that are well studied in machine
learning and classifiers have been designed to compensate for
them. TSC characteristics that will confound traditional clas-
sifiers include discriminatory features in the autocorrelation
function, phase independence within a class and imbedded
discriminatory subseries. However, not all problems will
have this characteristic, and benchmarking against standard
classifiers may give insights into the problem characteristics.
We have conducted resample experiments with 11 possible
benchmarks: logistic Regression (logistic); C4.5 (C45); naive
Bayes (NB); Bayes net (BN); support vector machine with
linear (SVML) and quadratic kernel (SVMQ); multilayer
perceptron (MLP); 1-NN with Euclidean distance (ED) and
Dynamic time warping (DTW); random forest (with 500
trees) (RandF); and rotation forest (with 50 trees) (RotF).
The average ranks are shown in Figure 1. RotF, RandF
and DTW form a clique of classifiers better than the others.
Based on these results, we select RotF and DTW (with win-
dow size set through cross validation) as our two benchmarks
classifiers.

4.2 Comparison Against Benchmark Classi-
fiers

Table 2 shows the summary of the pairwise results of the 19
classifiers against DTW and RotF. Nine classifiers are sig-
nificantly better than both benchmarks: COTE; ST; BOSS;
EE; DTWF ; TSF; TSBF; LPS; and MSM. BOP, SAXVSM
and FS are all significantly worse than both the benchmarks.
This reflects the published FS results, but is worse than
expected for BOP and SAXVSM.

4.3 Comparison of All TSC Algorithms

CD

11 10 9 8 7 6 5 4 3 2 1

2.7412
RotF

3.8471
RandF

3.9588
DTW
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5.4059
MLP
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ED
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SVML

7.4824
BN
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8.8
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Figure 1: Critical difference diagram for 11 potential
benchmark classifiers.
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Figure 2: Critical difference diagram for the 9 classi-
fiers significantly better than both benchmark clas-
sifiers.

Figure 2 shows the critical difference for the nine classifiers
that are significantly better than both benchmarks. The
most obivous conclusion from this graph is that COTE is
significantly better than the others. EE and ST are compo-
nents of COTE, hence this result demonstrates the benefits
of combining classifiers on alternative feature spaces. The
second distinguishing feature is the good performance of
BOSS, and to a lesser degree, DTWF . We discuss these
results in detail below.

4.4 Results by Algorithm Type
Time Domain Distance Based Classifiers. Of the three
distance based approaches we evaluated (TWE, WDTW and
MSM), MSM is the highest rank (9th) and is the only one
significantly better than both benchmarks. WDTW (ranked
14th) is better than DTW but not RotF. This conclusion
contradicts the results in [24] which found no difference be-
tween all the elastic algorithms and DTW. This demonstrates
that whilst there is a significant improvement, the benefit is
small. MSM is under 2% on average better than DTW and
RotF. The average of average differences in accuracy between
WDTW and DTW is only 0.2%. The fact we are resampling
has allowed us to detect such as small improvement. We
made no attempts to speed up the distance measures, and
of all the measures used in [24], MSM and TWE were by



Table 2: A summary of algorithm performance grouped based on significant difference to DTW and RotF. The
column prop gives the proportion of problems where the classifier has a significantly higher mean accuracy
over 100 resamples. The column mean gives the mean difference in mean accuracy over all 85 problems.

Classifier Prop better Mean difference Classifier Prop better Mean difference

Significantly better than DTW Significantly better than RotF
COTE 96.47% 8.12% COTE 84.71% 8.14%

EE 95.29% 3.51% ST 75.29% 6.15%
BOSS 82.35% 5.76% BOSS 63.53% 5.78%

ST 80.00% 6.13% TSF 63.53% 1.93%
DTWF 75.29% 2.87% LPS 60.00% 1.86%

TSF 68.24% 1.91% EE 58.82% 3.54%
TSBF 65.88% 2.19% DTWF 58.82% 2.89%
MSM 62.35% 1.89% MSM 57.65% 1.91%
LPS 61.18% 1.83% TSBF 56.47% 2.22%

WDTW 60.00% 0.20% Not significantly different to RotF
DTDC 52.94% 0.79% CIDDTW 48.24% 0.56%

CIDDTW 50.59% 0.54% DTDC 47.06% 0.82%
Not significantly different to DTW DDDTW 45.88% 0.44%

DDDTW 56.47% 0.42% TWE 45.88% 0.40%
RotF 56.47% -0.02% WDTW 44.71% 0.22%
TWE 49.41% 0.37% LS 44.71% -2.97%

Significantly worse than DTW DTW 43.53% 0.02%
LS 47.06% -2.99% Significantly worse than RotF

SAXVSM 41.18% -3.29% BOP 34.12% -3.03%
BOP 37.65% -3.05% SAXVSM 31.76% -3.26%
FS 30.59% -7.40% FS 22.35% -7.38%

far the slowest. These results indicate it may be worthwhile
examining speed ups for MSM.

Difference Based Classifiers. In line with published re-
sults, two of the difference based classifiers, CIDDTW and
DTDC are significantly better than DTW, but the mean
improvement is very small (under 1%). None of the three
approaches are significantly different to RotF. We believe
this highlights an over-reliance on DTW as a benchmark. In
line with the original description we set warping window for
CIDDTW as the optimal for DTW. Setting the window to
optimise the CIDDTW distance instead might well improve
performance.

Dictionary Based Classifiers. The results for window
based dictionary classifiers are confusing. SAXVSM and
BOP are significantly worse than the benchmarks and ranked
18th and 19th overall respectively. This would seem to sug-
gest there is little merit in dictionary transformations for
TSC. However, the BOSS ensemble is one the most accu-
rate classifiers we tested. It is significantly better than both
benchmarks and is ranked third overall. The main differ-
ences between BOP and BOSS are that BOSS uses a Fourier
transformation rather than PAA and employs a data driven
discretisation rather than fixed boundaries. This indicates
that there may be further scope for window based spectral
classifiers. The use of an ensemble also significantly improves
accuracy. It would be interesting to determine which dif-
ference contributes most to the improved performance of
the BOSS ensemble. DTWF also did well (ranked 5th). In-
cluding SAX features significantly improves DTWF , so our
conjecture is that the DTW features are compensating for
the datasets that BOP does poorly on, whilst gaining from

those it does well at. This would support the argument for
combining features from different representations.

Shapelet Based Classifiers. FS is the least accurate classi-
fier we tested and is significantly worse than the benchmarks.
LS is not significantly better than either benchmark and in
fact it is significantly worse than DTW. Our FS algorithm
reproduces published results and we believe is faithful to the
original. The LS results may be improved with the Adagrad
enhancement that will be included. Conversely, the ST has
exceeded our expectations. It is significantly better than both
benchmarks and is the second most accurate classifier overall,
significantly better than six of the other eight classifiers that
beat both benchmarks. The changes proposed in [7] have not
only made it much faster, but have also increased accuracy.
Primary amongst these changes is balancing the number of
shapelets per class and using a one-vs-many shapelet quality
measure. However, ST is the slowest of all the algorithms
we assessed and there is scope to increase the speed without
compromising accuracy.

Interval Based Classifiers. The interval based approaches,
TSF, TSBF and LPS, are all significantly better than both
the benchmarks. This gives clear support to the idea of
interval based approaches. There is no significant difference
between them. Hence, based on this evidence, we conclude
there is definite value in interval based algorithms and would
favour TSF for its simplicity.

Ensemble Classifiers. The top seven classifiers are all
ensembles. This is strong evidence to support the view that
ensembling is one of the simplest ways of improving a classi-
fier. It seems highly likely the other classifiers would benefit



Table 3: Best performing algorithms split by problem type. Each entry is the percentage of problems of that
type a member of a class of algorithm is most accurate for.

Problem COTE Dictionary Difference Elastic Interval Shapelet Vector Counts
Image Outline 24.14% 13.79% 6.90% 17.24% 0.00% 17.24% 20.69% 29

Sensor Readings 38.89% 0.00% 5.56% 11.11% 5.56% 22.22% 16.67% 18
Motion Capture 35.71% 21.43% 7.14% 7.14% 14.29% 14.29% 0.00% 14
Spectrographs 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 7

Electric Devices 0.00% 16.67% 0.00% 0.00% 16.67% 66.67% 0.00% 6
ECG measurements 33.33% 16.67% 0.00% 0.00% 0.00% 50.00% 0.00% 6

Simulated 40.00% 20.00% 0.00% 20.00% 0.00% 20.00% 0.00% 5
Overall 27.06% 11.76% 4.71% 10.59% 4.71% 22.35% 18.82%
Counts 23 10 4 9 4 19 16 85

from a similar approach. One of the key ensemble design
decisions is promoting diversity without compromising ac-
curacy. TSF, TSBF and LPS do this through the standard
approach of sampling the attribute space. BOSS ensembles
identical classifiers with different parameter settings. ST and
EE engender diversity though classifier heterogeneity. Em-
ploying different base classifiers in an ensemble is relatively
unusual, and these results would suggest that it might be
employed more often. COTE is significantly better than all
other classifiers. It promotes diversity through employing
different transformations/data representations in addition to
using a range of base classifiers. Its simplicity is its strength.
These experiments suggest COTE may be even more accurate
if it were to assimilate BOSS and an interval based approach.

4.5 Results by Problem Type
Table 3 shows the performance of algorithms against prob-
lem type. The data is meant to give an indication as to
which family of approaches may be best for each problem
type. The sample sizes are small, so we must be careful
drawing too many conclusions. However, this table does
indicate how evaluation can give insights into problem do-
mains. So, for example, Shapelets are best on 4 out of 6 of
the ElectricDevice problems and 3 out of 6 ECG datasets,
but only 26% of problems overall. This makes sense in terms
of the applications, because the profile of electricity usage
and ECG irregularity will be a subseries of the whole and
largely phase independent. The vector classifiers do best on
all of the Spectrograph data sets, indicating there is little
discriminatory information in the location of measurements.
COTE is the best algorithm on nearly 40% of the sensor
problems. This suggests that there are a range of features
that help classify these problems and no one representation
is likely to be sufficient.

5. CONCLUSIONS
The primary goal of this series of benchmark experiments
is to promote reproducible research and provide a common
framework for future work in this area. We view data mining
as a practical area of research, and our central motivation is
to find techniques that work. Received wisdom is that DTW
is hard to beat. Our results confirm this to a degree (7 out
of 19 algorithms fail to do so), but recent advances show
it not impossible. Our results indicate that COTE is, on
average, clearly superior to other published techniques. It is
on average 8% more accurate than DTW and RotF and 3%
more accurate than the closest competitor. However, COTE
is a starting point rather than a final solution. Firstly, the no
free lunch theorem leads us to believe that no classifier will

dominate all others. The research issues of most interest are
what types of algorithm work best on what types of problem
and can we tell a priori which algorithm will be best for a
specific problem. Secondly, COTE is hugely computation-
ally intensive. It is trivial to parallelise, but its run time
complexity is bounded by the Shapelet Transform, which is
O(n2m4) and the parameter searches for the elastic distance
measures, some of which are O(n3). An algorithm that is
faster than COTE but not significantly less accurate would
be a genuine advance in the field. Thirdly, COTE gives little
insight into the problem domain. Finally, we are only looking
at a very restricted type of problem. We have not consid-
ered multi-dimensional, streaming, windowed, long series or
semi-supervised TSC, to name but a few variants. Each
of these subproblems would benefit from a comprehensive
experimental analysis of recently proposed techniques. We
are constantly looking for new areas of application and we
will include any new data sets that are donated in an ongoing
evaluation. We will happily evaluate anyone else’s algorithm
if it is implemented as a WEKA classifier (with all model
selection performed in the method buildClassifier) and if it
is computationally feasible. If we are given permission we
will release any results we can verify through the associated
website. For those looking to build a predictive model for
a new problem we would recommend starting with DTW,
RandF and RotF as a basic sanity check and benchmark.
We have made little effort to perform model selection for
the forest approaches because it is generally accepted they
are robust to parameter settings, but some consideration
of forest size and tree parameters may yield improvements.
However, our conclusion is that using COTE will probably
give you the most accurate model. If a simpler approach
is needed and the discriminatory features are likely to be
embedded in subseries, then we would recommend using TSF
or ST if the features are in the time domain (depending on
whether they are phase dependent or not) or BOSS if they
are in the frequency domain. If a whole series elastic measure
seems appropriate, then using EE is likely to lead to better
predictions than using just DTW.

Finally, we stress that accuracy is not the only consideration
when assessing a TSC algorithm. Time and space efficiency
are often of equal or greater concern. However, if the only
metric used to support a new TSC is accuracy on these
test problems, then we believe that evaluation should be
transparent and comparable to the results we have made
available. If a proposed algorithm is not more accurate
than those we have evaluated, then some other case for the
algorithm must be made.
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[10] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[11] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time
series forest for classification and feature extraction.
Information Sciences, 239:142–153, 2013.

[12] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data:
Experimental comparison of representations and
distance measures. In Proc. 34th VLDB, 2008.

[13] B. Fulcher and N. Jones. Highly comparative
feature-based time-series classification. IEEE
Transactions on Knowledge and Data Engineering,
26(12):3026–3037, 2014.
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