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ABSTRACT

We propose a new data-driven procedure for optimal selec-
tion of tuning parameters in dynamic clustering algorithms,
using the notion of stability probe. Due to the shape of the
stability probe dynamics, we refer to the new clustering sta-
bility procedure as Downhill Riding (DR). We study final
sample performance of DR in conjunction with DBSCAN
and TRUST in application to clustering synthetic times se-
ries and yearly temperature records in Central Germany.

Keywords
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1. INTRODUCTION
Clustering of time series has received considerable atten-

tion in the last two decades both in data mining and statis-
tical literature [32, 28, 39, 52, 19], with applications ranging
from finance and communication sciences to neuroscience
and geology. Most recently, the rampant growth of vari-
ous remote sensing technologies has resulted in a spike of
interest in space-time data mining and particularly cluster-
ing of environmental time series and spatio-temporal pro-
cesses [37, 31, 47, 38]. However, many currently existing
clustering procedures for space-time data are either based
solely on geographical proximity, which does not account
for drifts in space-time data distribution, or are restricted
to a relatively small domain to avoid high spatial hetero-
geneity [45, 6]. Furthermore, the number of possible clus-
ters is often fixed a-priori, which substantially limits the
utility of such clustering procedures in environmental appli-
cations that are typically characterized by spatio-temporal
non-stationarity and non-separability [23, 42].
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Our initial interest in the topic was motivated by studies
of the impact of climate change on insurance claim dynamics
and early recognition of areas with the highest vulnerabil-
ity to adverse weather, particularly, the so-called “normal”
weather, with a low individual but high cumulative impact
[for overview see, e.g., 26, 41, 43, 44, and references therein].
Remarkably, attribution analysis of such “normal” weather
on the insurance industry is largely unexplored [14, 12, 44].
Since there exist multiple factors contributing to elevated in-
surance risks, e.g., city infrastructure, building codes, socio-
demographics, landscape, as well as numerous latent vari-
ables, areas that are similar in their sensitivity to adverse
weather are not necessarily close geographically. At the
same time, the number of clusters, or areas with similar lev-
els of vulnerability, is unknown and can vary over different
time periods driven, for example, by the El Niño-Southern
Oscillation (ENSO) cycles and other forcings. Moreover,
the choice of optimal number of clusters is a longstanding
problem in climate sciences [see, for instance, discussion by
46, 34]. How can we approach this problem then?

Remarkably, the number of dynamic data-driven cluster-
ing procedures for space-time data that allow the number,
shape and distributional properties of clusters to vary, still
remains quite limited. However, this research direction has
received a flare of interest in recent years [22, 11, 4]. Two
such dynamic clustering procedures are an efficient space-
time data mining procedure (TRUST) of [13] that is based
on interleaving spatial clustering and temporal trend detec-
tion; and a hierarchical spectral merger algorithm to cluster
brain connectivity [19]. Alternatively, we can adjust various
density-based clustering procedures such as DBSCAN [29,
18], OPTICS [2], DENCLUE [27] etc, to a space-time con-
text.

Despite the potential of these dynamic clustering proce-
dures, the price for their flexibility is usually a set of param-
eters that control clustering performance and are to be user-
specified – for instance, the maximum radius of the neigh-
borhood Eps in DBSCAN [18]; the steepness parameter ξ in
OPTICS [2]; the value similarity threshold δ in TRUST [13];
and the kernel smoothing parameter h in DENCLUE [27].
The choice of these parameters can noticeably impact the
number and shape of detected clusters, and ideally should
be approached in an objective manner.



In this paper we propose a new data-driven and computa-
tionally efficient procedure for optimal selection of clustering
tuning parameters using a clustering stability probe. Our
approach is rooted in the so-called clustering (in)stability
criteria [8, 7], based on the intuitive idea that if we ran-
domly split our data into two non-overlapping subsets, then
a good clustering algorithm should deliver similar clustering
results. Hence, the idea is to perform multiple splits, using
crossvalidation, and search for the case with the most similar
(on average) partitions. Clustering (in)stability has gained
an increased interest in machine learning and statistical sci-
ences for identification of the optimal number of clusters,
typically in conjunction with K-means [17, 8, 7, 51, 20].

Our approach, however, has two main advantages over
conventional clustering (in)stability. First, instead of mea-
suring the distance between each two partitions, which is
a very computationally demanding if not prohibitive step,
we select a clustering probe and define stability only on the
basis of the distance between univariate probes. In this pa-
per we are primarily interested in the utility of a number of
clusters as a probe. Second, we advance the idea of a cluster-
ing (in)stability criterion to choose the optimal parameters
in TRUST, DBSCAN and other dynamic clustering algo-
rithms. Due to the shape of the stability probe dynamics,
we refer to the new clustering stability procedure as Down-
hill Riding (DR). We outline the theoretical properties of
the new DR procedure and evaluate its finite sample per-
formance for dynamic clustering using synthetic time series.
We also illustrate the DR procedure in application to dy-
namic cluster detection in yearly temperature records among
167 stations in Central Germany over 1951–2010.

The paper is organized as follows. The new stability probe
approach, Downhill Riding (DR) algorithm, is presented in
Section 2. In Section 3 we discuss TRUST and DBSCAN,
i.e. the two primary clustering methods we focus on. The
proposed Downhill Riding (DR) algorithm is then evaluated
by extensive numerical studies in Section 4. In Section 5 we
illustrate applications of new Downhill Riding (DR) proce-
dure to analysis of the yearly temperature records in Central
Germany. The paper is concluded by discussion in Section 6.

2. DOWNHILL RIDING PROCEDURE

WITH CLUSTERING STABILITY PROBE
Preliminaries Let ΩN be the observed data set that con-

tains N multivariate items, i.e. ΩN = {a1,a2, . . . ,aN} and
ai = (ai1, ak2, . . . , ait)

T , 1 ≤ i ≤ N . (For instance, ai may
represent an i-th observed time series up to time point t.)
Our goal is to partition Ω into subsets C1, C2, . . . , CK such
that

⋃K
k=1 Ck = Ω and Ci

⋂

Cj = ∅ for i 6= j. A number
of clusters K is unknown a-priori. To achieve such parti-
tion C, we use a clustering algorithm M(Ω, ν), where ν is
a generic notation for a set of tuning parameters that con-
trols partitioning of Ω, and is usually pre-specified by user.
(For simplicity, we start from a case of a single parameter
ν but the idea can be extended to a more general case.)
The resulting clustering performance is typically evaluated
using standard information criteria such as the Normalized
Mutual Information (NMI), the Jaccard Index, Rand Index
etc [50, 35].

The Downhill Riding (DR) Algorithm As discussed
by [29], choice of a tuning parameter ν, such as Eps in
DBSCAN, steepness parameter ξ in OPTICS etc may sub-

stantially impact the resulting partitioning C. How can we
choose ν in an objective manner while achieving the optimal
clustering performance? In a nutshell, our intuitive idea is
to look at the stability of a number of detected clusters as
indicator for the underlying “ground truth”.

In particular, let us select a number of clusters K̂ as a
clustering probe; obviously, K̂ is a function of ν and ΩN

(i.e., K̂(ν,ΩN )). Suppose that ΩN is a sufficiently large
data set such that each true cluster is well represented in
ΩN . We now randomly split ΩN into two subsets Ω1

N/2 and

Ω2
N/2 of equal cardinality. If we partition Ω1

N/2 and Ω2
N/2

using the same clustering algorithm M(ν, ·), we intuitively
expect that, if the tuning parameter ν is selected correctly,
such partitions should be relatively similar, homogeneous or,
at least,

|K̂(ν,Ω1
N/2)− K̂(ν,Ω2

N/2)| ≈ 0. (1)

Hence, by viewing (1) as a function of ν, we can look at its
minimum as indicator of correctly selected parameter ν. We
define the function in (1) as the Cluster Deviation:

CD(ν) = |K̂(ν,Ω1
N/2)− K̂(ν,Ω2

N/2)|. (2)

However, there exist two additional extreme scenarios when
CD(ν) ≈ 0: first, when all N/2 items in Ω1

N/2 and Ω2
N/2 are

partitioned into N/2 individual clusters; and second, when
all data are grouped into a single cluster. Hence, we search
for the local minimum in CD(ν) as the indicator of “truth”.
Since estimation uncertainty due to a single split of ΩN into
Ω1

N/2 and Ω2
N/2 might be high, we use the V -fold crossvali-

dation procedure with multiple splits (see Algorithm 1).
Note that the idea is intrinsically linked to the notion of

clustering (in)stability [8, 7, 10, 49, 51]. However, in con-
trast to the earlier stability approaches of [17, 51, 20], we do
not aim to evaluate closeness of cluster assignments of each
observation but focus on a distance between probes.

Algorithm 1: Downhill Riding (DR)

Input : ∆ = {νn, n = 1, 2, . . . ,M}, Ω, B
Output: optimal empirical estimate ν̂e

1 for each νn ∈ ∆ do
2 Compute ACD(νn);
3 A← {A ∪ACD(νn)};

4 end
5 Find ν∗

n such that ACD(ν∗

n) is a local minimum in A;
6 if the number of ν∗

n equals 1 then
7 return ν∗

n;
8 else
9 return argmin ν∗

n;
10 end

We now define a new measure for the stability of a clustering
algorithm, Average Cluster Deviation (ACD), as a function
of the tuning parameter ν:

ACD(ν) =
1

B

∑B
b=1

∣

∣

∣

∣

K̂(ν,Ω1
N/2, b)− K̂(ν,Ω2

N/2,b)

∣

∣

∣

∣

, (3)

where B is the number of splits in cross-validation, and
K̂(ν,Ω1

N/2, b) and K̂(ν,Ω2
N/2,b) are the number of clusters

delivered by M in application to the b-th splits of Ω1
N/2, b)

and Ω2
N/2, b). The optimal empirical estimate ν̂e is the ar-

gument of the local minimum of ACD.



To get an initial validation insight to this idea, we now
consider a relationship between ACD and NMI, in applica-
tion to the TRUST clustering algorithm. Fig. 1 shows the
aggregated dynamics, while Fig. 2 depicts a realization for
single synthetic data set. Both Fig. 1 and 2 suggest that
the local minimum for ACD indeed is well aligned with the
global maximum of NMI. Note that as expected, ACD is
close to 0 at lower or higher values of ν. Lower values of ν
tend to correspond to a higher number of clusters, up to an
extreme case of each sample forming a single cluster, which
leads to lower (or even zero) values of ACD but also lower
NMI. At the same time, higher values of ν lead to a lower
number of clusters, up to an extreme case of all samples be-
ing in one group, which again leads to lower (or even zero)
values of ACD but low NMI. Based on the

∧

-shape of ACD
and our search for its right-hand side minimum, we call our
algorithm a Downhill Riding (DR) procedure.
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Figure 1: Aggregated dynamics of the Downhill Rid-
ing (DR) procedure.
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Figure 2: Dynamics of the Downhill Riding (DR)
procedure for a single data realization with cluster-
ing by TRUST.

Asymptotics Properties To proceed with the theoret-

ical properties of the DR procedure, we adopt notions of
clustering consistency and stability discussed by [8, 10].

Definition Assume that the observed data ΩN has been
sampled from an underlying population Ω according to some
probability measure P . Let Q be a clustering loss function
on the set S of all partitions of the population Ω. Let C∗(Ω)
be a unique minimizer of Q. A clustering algorithm M(ν)
is called asymptotically consistent if it delivers a partition
C(ΩN ) such that Q(C(ΩN )) converges to Q(C∗(Ω)) as N →
∞.

Proposition 1. Let M be an asymptotically consistent
clustering algorithm such that Q(C(ΩN )) converges to
Q(C∗(Ω)) at rate rN,k where rN,k is a nonincreasing se-
quence of positive numbers. Let ν∗ be a a value of a tuning
parameter ν that delivers M(Ω) = C∗. Then, in probability

ν̂0 →
N→∞

ν∗,

where ν̂o is the argument of the local minimum of the oracle
loss function, or the Expected Cluster Deviation,

E

∣

∣

∣

∣

K̂(ν,Ω1
N/2, b)− K̂(ν,Ω2

N/2, b)

∣

∣

∣

∣

.

Proof of Proposition 1 is approached similarly to Theorem 1
of [51].

Now, let ν̂e be the empirical counterpart of ν̂o, that is,

ν̂e = argmin
1

B

∑B
b=1

∣

∣

∣

∣

K̂(ν,Ω1
N/2, b)− K̂(ν,Ω2

N/2, b)

∣

∣

∣

∣

.

The next proposition states that ν̂e and ν̂o are asymptoti-
cally negligible.

Proposition 2. Let ΩN = {a1,a2, . . . ,aN} be a sample
from an underlying population Ω, where ai, i = 1, . . . , N are
mutually independent random vectors. Let M be an asymp-
totically consistent clustering algorithm, and let C∗(Ω) =
{C∗

1 , . . . , C
∗

K} be the true clustering of Ω. Let Ni be the
number of items in ΩN corresponding to the true cluster C∗

i

in Ω. Then, if K ≪ Ni, Ni →∞, and N →∞

|ν̂e − ν̂0| → 0, (4)

in probability.

The proof of Proposition 2 is based on the Chebyshev
inequality and approached in a similar manner as Theorem 3
by [9].

3. CLUSTERING ALGORITHMS
We now discuss the two main clustering algorithms that

illustrate the application of the Downhill Riding procedure
– TRUST and DBSCAN.

3.1 The TRUST Algorithm
The TRUST algorithm is an unsupervised clustering algo-

rithm designed for space-time data streams by Ciampi [13,
3]. Specifically, TRUST integrates spatial clustering and
temporal trend detection with a goal to continuously group
geo-referenced data according to a similar temporal trajec-
tory in time. TRUST has the following advantages:

• as opposed to k-means, no number of clusters needs to
be pre-specified a-priori;



• the algorithm is applicable to arbitrarily shaped clus-
ters;

• the algorithm can dynamically detect the drift of space-
time data distributions by using a sliding window mov-
ing from past to recent.

The core approach of TRUST is based on the extension
of a sliding-window model to multiple spatially distributed
data sources. In particular, let observations collected at mul-
tiple spatial devices at the same time point be referred as a
layer, and several consecutive layers constitute a slide (see
Figure 3). A sliding window consists of multiple consecutive
layers and moves from past to recent. The main steps of
TRUST is first to detect trend-clusters over the slide time
(i.e., slide-level clustering), based on closeness (homogene-
ity) of sources within a layer where level of homogeneity is
controlled by a threshold δ; and then to approximate trend-
clusters by combining the slide-level trend cluster sets (i.e.
window-level clustering). Window and slide sizes can be de-
fined via expert knowledge, e.g. corresponding to climate
cycles; however, there exists no objective way to select the
key parameter δ, which serves as a particular motivation of
our DR approach.

Figure 3: The framework of TRUST.

3.2 The DBSCAN Algorithm
Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) of [18, 29] is one of the most widely used clus-
tering algorithms and is the 2014 SIGKDD Test of Time
Award. DBSCAN also does not require a pre-defined num-
ber of clusters and can detect arbitrarily shaped clusters like
TRUST. The core idea of DBSCAN is as follows: given a
set of points in some space, it groups together points that
are in a high-density region (i.e., neighbors of the points are
close to each other), and marks points as outliers if they
lie alone in low-density regions (whose nearest neighbors are
far away). DBSCAN requires two parameters: the max-
imum radius of the neighborhood, Eps and the minimum
number of points required to form a dense region, minPts.
Selection of both Eps and minPts is typically performed in
a subjective manner.

4. NUMERICAL EXPERIMENTS

4.1 Benchmark Iris Data
We start from evaluating the performance of the DR pro-

cedure in application to DBSCAN. We compare the DR
performance against DBSCAN with a conventionally pre-
selected Eps [18] as well as against OPTICS [2], using the

benchmark Iris data [21, 30]. Despite the popularity of DB-
SCAN in spatial clustering, the selection of its key parame-
ter Eps is mostly based on heuristic and subjective methods
such as, for instance, as a sorted k-dist graph [18]. (The
sorted k-dist graph algorithm is implemented in R by [25]).
As a generalized version of DBSCAN, the OPTICS algo-
rithm first constructs a reachability plot from the data and
then automatically detects clusters, based on an extraction
algorithm without a need to specify Eps. The algorithm
used for automatic extraction of clusters in OPTICS in this
paper is based on the approach of [40, 53].

The Iris data contain 150 samples with 4 variables for 3
clusters. The conventionally pre-selected Eps for DBSCAN,
using the sorted k-dist graph, is set to 0.5. As Table 1
indicates, for each possible value of parameter MinPts, DB-
SCAN with Downhill Riding outperforms DBSCAN with the
conventional selection and OPTICS, providing higher NMI
values.

Table 1: Performance of DBSCAN with Eps-opt se-
lected using Downhill Riding and with Eps-kdist se-
lected by conventional k-dist graph and OPTICS.

MinPts Eps-opt Eps-kdist OPTICS
NMI 5 0.76 0.61 0.75
NMI 6 0.76 0.60 0.75
NMI 7 0.76 0.58 0.75

4.2 Synthetic data
To further evaluate the performance of the Downhill Rid-

ing procedure, we proceed with a series of Monte Carlo
simulations. The first set of simulations estimate the fi-
nite sample performance of Downhill Riding when used with
DBSCAN and TRUST compared to the highest empirically
achievable performance of the two algorithms without our
procedure. We then proceed with simulations that compare
our automatic procedure to algorithms that have the benefit
of a-priori knowledge of the clustering parameters.

Automatic selection study For the first set of simula-
tions, we produce a data stream of 20 time series, denoted by
Y , and obtained by sequencing 2 consecutive periods (slides)
of 80 time points (layers). The cluster configurations that
were used for the generation of Y are shown in Table 2.

Table 2: Cluster configuration of 20 time series on
2 time periods.

Time series model Time period 1 Time period 2
AR(1), φ1 = 0.5, T ime series 2, 11, T ime series 7, 15,
εt ∼ N(0, 1) 14, 16 17, 18, 5

AR(2), φ1 = 0.6, φ2 = 0.2, T ime series 6, 7, T ime series 2, 8
εt ∼ N(1, 1) 13, 17 12, 13, 14

MA(1), θ1 = 0.7, T ime series 1, 8, T ime series 3, 11,
εt ∼ N(2, 1) 9, 19 16, 19, 20

MA(2), θ1 = 0.8, θ2 = −0.6, T ime series 3, 10, -
εt ∼ N(3, 1) 12, 18

ARMA(1, 1), φ1 = 0.8, θ1 = 0.2, T ime series 4, 5, T ime series 1, 4,
εt ∼ N(4, 1) 15, 20 6, 9, 10

Tables 3 and 4 present the finite sample performance
of Downhill Riding when used with TRUST and DBSCAN
measured in terms of ACD and NMI. We calculate ACD
and NMI with different values of δ (for TRUST) and Eps
(for DBSCAN). The number of detected clusters for TRUST
corresponds to slide-level clustering by setting slide size p =
80; and for DBSCAN, this corresponds to Euclidian metric.



Table 3: Performance of TRUST with δopt selected
by Downhill Riding and TRUST with δoracle. Slide-
level trend continuity threshold θ is 0.9, and slide
size p is 80. Number of Monte Carlo experiments is
100. Number of cross-validation splits T is 100.

δopt δoracle
Average NMI 0.82(0.01) 0.83(0.02)
Average ACD 0.11(0.10) 0.82(0.66)

Table 4: Performance of DBSCAN with Epsopt
selected by Downhill Riding and DBSCAN with
Epsoracle. MinPts is 3. Number of Monte Carlo ex-
periments is 100. Number of cross-validation splits
T is 100.

Epsopt Epsoracle
Average NMI 0.80(0.06) 0.88(0.04)
Average ACD 0.64(0.09) 0.73(0.09)

We find that for TRUST, δopt, selected using Downhill
Riding is close to δoracle and yields NMI comparable to the
highest empirically achievable NMI (Table 3). The results
are similar for DBSCAN, where the Eps selected by Downhill
Riding produces NMI close to the highest possible (Table 4).
The findings show that our automatic parameter selection
procedure tends to deliver close to the empirically achievable
levels of TRUST and DBSCAN despite the lack of a-priori
knowledge.

Comparative study The second set of simulations com-
pare the finite sample performance of TRUST and DBSCAN
with automatic parameter selection using Downhill Riding
to a number of clustering algorithms that are provided with
the true number of clusters. The competing algorithms in-
clude k-means and a number of conventional hierarchical
clustering approaches using different feature-based distance
measures [36]. We simulate a data stream of 20 time series,
denoted by Y , obtained by sequencing 4 consecutive peri-
ods of 120 time points (layers), generated according to the
cluster configurations reported in Table 5.

The clustering algorithms are applied on each period of Y .
For TRUST, we set the layer size p as 40, the slide continuity
threshold θ as 0.9, the window size ω as 3 (step size as 3), and
the window continuity threshold ǫ as 0.6. For DBSCAN, the
parameter MinPts in DBSCAN is set as 3. The true number
of clusters is set as known for the competing algorithms in
each period. The dissimilarity measures in k-means and
DBSCAN are Euclidean distance; the linkage function in all
feature-based hierarchical clustering is complete linkage.

The clustering performance is evaluated on each of the
4 periods – measuring the amount of agreement between
the true cluster partition G = {G1, . . . , G20} (the “ground-
truth”), which is known, and the experimental cluster solu-
tion A = {A1, . . . , A20} yielded by the clustering algorithms.
Validation measures include standard clustering external cri-
teria (NMI and Jaccard Index) and internal criteria (Mean
Absolute Percentage Error (MAPE)).

The comparative results are shown in Figure 4. Using
three evaluating measures produced consistent results: based
on NMI (Figure 4a), TRUST ranked 4th, 2nd, 5th, 4th
among 9 competitors in the four time periods, respectively.
The two most competitive clustering algorithms are K-Means
and CORT. However, both are allowed to know the true

number of clusters and thus are advantaged over DBSCAN
and TRUST. Nevertheless, TRUST still outperforms NP,
LNP, ACF and COR, which also have the informational ad-
vantage. With the additional information, k-means outper-
forms TRUST in all four time periods. Temporal correlation-
based (CORT) and integrated periodogram-based (IP) clus-
tering outperform TRUST except in time period 2. Simi-
lar performance is observed with Jaccard Index (Figure 4b)
and MAPE (Figure 4c) (For MAPE, smaller values indi-
cate better performance). TRUST outperforms DBSCAN
(both are using Downhill Riding), in all four time periods
using all three measures. In general, DBSCAN delivers lower
performance than TRUST, which can be explained by the
fact that DBSCAN primarily focuses on spatial rather than
spatio-temporal clustering.

The performance of Downhill Riding with TRUST is com-
petitive, especially given that the competing algorithms have
an advantage of knowing the true number of clusters in each
time period, thus operating with more information about the
data. Despite this, using our automatic selection procedure,
TRUST still outperforms some of its competitors in most
of the time periods, such as normalized periodogram-based
(LNP, NP), autocorrelation-based (ACF), and correlation-
based clustering (COR). Combined with the results from the
benchmark Iris data study above, the results show that our
automatic procedure is not just on par with the competition
that has the informational advantage, but at times better.
These findings imply that the new DR algorithm can be
particularly useful in studies where there is no knowledge of
the parameters or number of clusters, such as when explor-
ing environmental, insurance, or social science data, without
imposing considerable performance trade-offs.

The study has been conducted using statistical software
R 1 on a machine with 2.83 GHz Intel Xeon processor and
16 GB RAM. With synthetic data, the average elapsed time
of one experiment with TRUST is 34.3 min with 556.5 MB
average virtual memory usage; and the average elapsed time
of one experiment with DBSCAN is 5 s with 566.3 MB av-
erage virtual memory usage. For the comparative study, the
average elapsed time of one experiment is 3.3 h with 616.7
MB average virtual memory usage, and for the Iris real data
DBSCAN comparison, the average elapsed time of one ex-
periment is 4.5 s with 0.3 MB average virtual memory usage.

5. CASE STUDY
Observed temperature data We applied TRUST and

DBSCAN to yearly temperature records from 167 weather
stations in Central Germany in a 60-year period 1951–2010
[16]. Analyzing temperature data for such a long period can
provide some important insights into climate change and the
differences of these effects in the various geographic areas.
The controlling parameters δ for TRUST and Eps for DB-
SCAN are set as 0.036 and 6.5 by “Downhill Riding”. We
select 15-year intervals as a time period to perform clus-
tering since the climate of Europe exhibits cycles of 12-16
years [48]. Thus, the 60 year temperature data is segmented
into 4 non-overlapped time periods, each of which is clus-
tered by TRUST and DBSCAN, respectively. We set the
layer size p as 40, the window size ω as 3 (with step size as
3), and set MinPts of DBSCAN as 3.

1The R code is available in a statistical software R package
funtimes [33]



(a) Performance in terms of NMI.
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(b) Performance in terms of Jaccard Index.
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Figure 4: Comparative study over four time periods using three measures. Black boxes show algorithms use
Downhill Riding.



Table 5: Cluster configuration of 20 time series on 4 time periods.
Time series model Time period 1 Time period 2 Time period 3 Time period 4

AR(1), φ1 = 0.5, T ime series 2, 11, T ime series 5, 7, T ime series 3,4, T ime series 5, 7,
εt ∼ N(0, 1) 14, 16 15, 17, 18 10,16 10 ,14, 16

AR(2), φ1 = 0.3, φ2 = −0.3, - - T ime series 9,12 T ime series 1, 4,
εt ∼ N(1, 1) 13, 18 11, 17, 18

AR(2), φ1 = 0.6, φ2 = 0.2, T ime series 6, 7, T ime series 2, 8, - T ime series 6, 8,
εt ∼ N(2, 1) 13, 17 12, 13, 14 13, 15, 19

MA(1), θ1 = 0.7, T ime series 1, 8, T ime series 3, 11, T ime series 2, 11, -
εt ∼ N(3, 1) 9, 19 16, 19, 20 14,15

MA(2), θ1 = 0.8, θ2 = −0.6, T ime series 3, 10, - T ime series 5, 7 T ime series 2, 3,
εt ∼ N(4, 1) 12, 18 8, 17 9, 12, 20

ARMA(1, 1), φ1 = 0.8, θ1 = 0.2, T ime series 4, 5, T ime series 1, 4, T ime series 1, 6 -
εt ∼ N(5, 1) 15, 20 6, 9, 10 19, 20

The clustering results based on TRUST and DBSCAN
show similar patterns where elevation is a dominant factor:
elevation of weather stations – one of the key factors in tem-
perature differences – is found to be relatively homogeneous
within each cluster. Figure 5 shows the results of TRUST
clustering in time period 4 in a topographic map. The con-
tour lines show places of equal elevation. Different clusters
are labeled with different colors. The weather stations in the
yellow cluster are mostly located in areas below 300 m; while
the weather stations in the red cluster are mostly located in
areas around 500-600 m. The fact that elevation strongly af-
fects temperature is well known in climate sciences. Hence,
we are interested to investigate potential less explicit latent
factors affecting temperature dynamics and segmentation.

Figure 5: Clustering of weather stations in time pe-
riod 4 (year 46-60) by TRUST.

Elevation Scaled temperature data We now consider
elevation scaled temperature where the impact of elevation
has been removed according to [5, 15]. In particular, let X
be elevation and Y be temperature, then:

Y t
n = βt0+βt1Xn+ǫtn, n = 1, 2, . . . , 167, t = 1, 2, . . . , 60 (5)

The residuals ǫtn (n = 1, 2, . . . , 167, t = 1, 2, . . . , 60) from
linear regression are combined into a new data set where
TRUST and DBSCAN are applied with the same framework
setting as in previous temperature data clusterings. Optimal
Downhill Riding parameters are δ and Eps, set as 0.1 and
0.65.

The resulting patterns are different from the ones observed
in the temperature clustering. Figure 6a and Figure 6b show
the clustering results for periods 1 and 4 by TRUST in ter-
rain maps, respectively. Climate stations in Halle (Saale)
area are grouped together in both time periods 1 and 4 (red
dots in Figure 6a and navy dots in Figure 6b). Average
residuals of the two clusters are 0.2 and 0.6 respectively,
which makes sense because Halle (Saale) area corresponds
to the dry region of Central Germany. In addition, a hand-
ful of stations north/northwest of Karlovy Vary show unique
patterns: individual weather stations form their own mini-
clusters. For example, black and grey dots in Figure 6a, and
light pink, rosy dots in Figure 6b. These weather stations are
all in a part of a mountain range called the Ore Mountains
where they are probably located in fairly unique topographic
situations, e.g. mountain top, or valley. In mountain areas,
the orientation of a valley can have a large influence on the
movement of air masses, so valleys of different orientations
may be distinct enough to be placed in different clusters.
Similar patterns are observed in the DBSCAN clustering re-
sults depicted in Figure 7.

Between periods 1 and 4, we observe how the cluster pat-
terns change dynamically. Weather stations in the south-
west area are grouping into one big yellow cluster, changing
from a mean residual −0.23 for the red cluster and −0.01
for the green cluster in period 1 to −0.02 for the yellow
cluster in period 4. And weather stations in the west are
grouping into another cluster (red) with a mean residual
0.12. Remarkably, the TRUST algorithm identifies partly
changing clusters of temperature residuals in the early and
late periods. Spatially varying climatic changes have been
observed elsewhere before [1]; such patterns that would ex-
plain these observed changes in clustering may potentially
be related to the complexity of topography in the studied
region (orographic effects), changes in cloud cover and at-
mospheric dust content due to reduced industrial emissions
first in West and later in East Germany, or confounding
with spatially varying changes in precipitation, for example.
While such explanations are not immediately evident from
the clusters produced by TRUST, this knowledge discovery
technique provides a starting point for further climatologi-
cal analyses of local patterns of climate change. Knowledge
of the existence and location of regions with homogeneous
patterns may furthermore be instrumental in the geostatis-
tical interpolation of instationary random fields of climatic
parameters [24].



(a) Period 1 (Year 1-15).

(b) Period 4 (Year 46-60).

Figure 6: Clustering of weather stations in time pe-
riod 1 and 4 by TRUST.

(a) Period 1 (Year 1-15).

(b) Period 4 (Year 46-60).

Figure 7: Clustering of weather stations in time pe-
riod 1 and 4 by DBSCAN.

Table 6: MAPE of 4 time periods by TRUST and
DBSCAN on observed temperature data.

TRUST
MAPE
(Year 1-15)

TRUST
MAPE
(Year 16-30)

TRUST
MAPE
(Year 31-45)

TRUST
MAPE
(Year 46-60)

0.07 0.07 0.06 0.03

DBSCAN
MAPE
(Year 1-15)

DBSCAN
MAPE
(Year 16-30)

DBSCAN
MAPE
(Year 31-45)

DBSCAN
MAPE
(Year 46-60)

0.11 0.11 0.10 0.09

Table 7: MAPE of 4 time periods by TRUST and
DBSCAN on scaled temperature data.

TRUST
MAPE
(Year 1-15)

TRUST
MAPE
(Year 16-30)

TRUST
MAPE
(Year 31-45)

TRUST
MAPE
(Year 46-60)

0.63 1.12 1.10 0.94

DBSCAN
MAPE
(Year 1-15)

DBSCAN
MAPE
(Year 16-30)

DBSCAN
MAPE
(Year 31-45)

DBSCAN
MAPE
(Year 46-60)

1.69 1.28 1.74 1.75

MAPE values for 4 periods of observed temperature data
and scaled temperature data are shown in Table 6 and Ta-
ble 7. TRUST outperforms DBSCAN in each of the 4 pe-
riods (with smaller MAPE) on both observed temperature
data and scaled temperature data.

6. CONCLUSION
In this paper, we advance the idea of clustering (in)stability

from a case of selecting a “true” number of clusters to a
choice of optimal tuning parameters in a broad range of
dynamic clustering algorithms. We propose a new data-
driven and computationally efficient procedure called Down-
hill Riding (DR) for optimal selection of clustering tuning
parameters in dynamic clustering algorithms like TRUST
and DBSCAN using a clustering stability probe. Using sim-
ulations, as well as real data, we show the effectiveness of
the new procedure for selection of optimal parameters. The
finite sample performance of Downhill Riding for dynamic
clustering of synthetic time series is close to the optimal
for these algorithms. Furthermore, the performance of clus-
tering algorithms using Downhill Riding against competing
algorithms that have a-priori knowledge of the parameters,
shows that our procedure is a viable alternative, and of-
ten performs better. We also illustrate the Downhill Riding
procedure in dynamic cluster detection in yearly tempera-
ture records among 167 stations in Central Germany over
1951-2010. Based on the clustering results of TRUST and
DBSCAN, not only do we discover a well known pattern
but also a dynamic pattern, which is useful when studying
spatially varying climatic changes. In the future, we plan
to extend the use of the new Downhill Riding procedure to
other other dissimilarity measures and stability probes, and
investigate the utility of Downhill Riding in other clustering
algorithms.
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