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ABSTRACT
Characterizing and understanding the structure and the evolution of
networks is an important problem for many different fields. While
in the real-world networks, especially the spatial networks, the time
lags cost to propagate influences from one node to another tend to
vary over both space and time due to the different space distances
and propagation speeds between nodes. Thus time lag plays an es-
sential role in interpreting the temporal causal dependency among
nodes and also brings a big challenge in network structure learn-
ing. However most of the previous researches aiming to learn the
dynamic network structure only treat the time lag as a predefined
constant, which may miss important information or include noisy
information if the time lag is set too small or too large. In this pa-
per, we propose a dynamic Bayesian model which simultaneous-
ly integrates two usually separate tasks, i.e. learning the dynam-
ic dependency network structure and estimating time lags, within
one unified framework. Besides, we propose a novel weight kernel
approach for time series segmenting and sampling via leveraging
samples from adjacent segments to avoid the sample scarcity and an
effective Bayesian scheme cooperated with RJMCMC and EP algo-
rithms for parameter inference. To our knowledge, this is the first
practical work for dynamic network structure learning concerned
with adaptive time lag estimation. Extensive empirical evaluations
are conducted on both synthetic and two real-world datasets, and
the results demonstrate that our proposed model is superior to the
traditional methods in learning the network structure and the tem-
poral dependency.
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1. INTRODUCTION
In real-life networks, the network structure and temporal depen-

dency are not invariant but tend to vary over both time and space.
Recently, dynamic dependency network structure learning has at-
tracted increasing attentions in various domains, such as gene reg-
ulatory network discovery [18] , social network analysis [10], cli-
mate data analysis [3] and so on. Mining the temporal dependency
is one of the fundamental tasks in network structure learning. As the
key feature to indicate the exact temporal dependency relationship,
time lag plays an essential role in characterizing and understanding
dynamic dependency network structure and evolution [4].

Taking the spatial network as an example [2], the time lag prob-
lem is much significant and inevitable due to the different space
distances and propagation speeds between nodes. For example, 1)in
the highway traffic network, the traffic flow of one destination sta-
tion in current time interval is constructed by vehicles from related
upstream origin stations several time interval ago. Thus the time
lags are related with the vehicle speeds and the distances from ori-
gin stations to destination stations. 2)In the air quality monitoring
network, the concentration of pollutant in one monitoring station
usually has temporal dependency on the concentrations of pollu-
tant in surrounding monitoring stations. The time lag always varies
over time and is influenced by various factors, like spatial distance,
wind speed, wind direction, etc. Therefore, it is necessary to learn
the time lag adaptively in the network structure learning process
instead of treating it as a predefined constant.

In recent years, there have been a plenty of methods for dynamic
network structure learning and temporal causal discovery. Some re-
searches focus on the dependency relationship of every time point
in time series, such as [21] [19] [12]. While some researches regard
that the dependency network structures vary by time intervals, such
as [5] [23] [18] [22]. As aforementioned, most of the existing stud-
ies do not take the dynamic time lag into account and only simply
treat time lag as a predefined constant.

Moreover, we identify two major challenges in learning dynamic
network structures with simultaneous estimation of dynamic time
lags: (i) How fast the dynamic structures vary by time? If we learn
a structure for each single time point, the results would be redun-
dant and the learning process would be computationally expensive.
However, if the time series are first segmented and then one re-
lationship is learned to each segment, it would suffer the scarcity
of samples when the segment is short [21]. (ii) How to learn the
dynamic time lags which vary with the network structures simul-
taneously during the structure estimation process? The uncertainty
of time lags increases the difficulty of the whole learning process.

In this paper, we propose a dynamic Bayesian model to learn
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the dynamic dependency network structure and the optimal time
lags simultaneously in one unified framework. We extend the non-
homogeneous dynamic Bayesian model where changepoints are
used to segment the time series. Instead of setting the minimum
length of interval, we assume the network structures vary gradu-
ally and propose a novel kernel reweighted probabilistic approach
by leveraging the samples from adjacent segments to avoid sam-
ple scarcity within narrow segments. When we estimate the de-
pendency network structures, we regard lags as variables instead
of parameters set artificially. In addition, the dependency network
structures are reflected by the regression coefficients which we take
as the spike and slab prior. In parameter inference part, an effec-
tive Bayesian scheme incorporating the RJMCMC and Expectation
Propagation algorithm (EP) is proposed in order to infer the pa-
rameters of the model, where the dimension of the parameter is
unknown and the posterior probability is intractable to sample.

To the best of our knowledge, this is the first practical method
for dynamic structure learning with adaptive time lag estimation. In
summary, the contributions of our work are described as follows:

• In this paper, a novel dynamic Bayesian model is proposed
which integrates both the dynamic network structure learn-
ing and dynamic time lag estimation simultaneously in one
unified framework.

• We propose a novel weight kernel approach for time series
segmenting and sampling to avoid the sample scarcity based
on the assumption that the network structure of adjacent seg-
ments are similar.

• In order to infer the parameters in our model, where the di-
mension of parameters is unknown and some posterior prob-
abilities are intractable to sample, we propose an effective
Bayesian scheme incorporating the RJMCMC and EP algo-
rithms.

• We evaluate our method on a synthetic dataset and two real
world datasets. Experimental results show the effectiveness
and promise of the proposed model.

The rest of the paper is organized as follows: we first review
the algorithms to learn dynamic network structures in Section 2 ;
The problem definition is given in Section 3. Then we describe the
details of our proposed model in Section 4 and the parameter esti-
mation method in Section 5. The experimental results on synthetic
dataset and real-world datasets are present in Section 6. Finally, we
summarize the paper and conclude with future work in Section 7.

2. RELATED WORK
Serious attempts to learn dynamic networks whose topologies

vary by time started in 2005 [24] [22]. The research of dynamic
relationships/networks discovery for time series can be categorized
into two types: structures varying by time points and relationships
varying by segments.

The research in the first category is based on that the structures of
the networks change at each time point. In order to make a further
analysis on time series data, dynamic graph structure learning has
been provided [7] [13], which reveals the dependencies between
variables at the same time stamp. However, most of these algo-
rithms only use the data from the same time stamp to learn the
dependencies. [19] develops a dynamic temporal graphical model
based on hidden Markov model regression and lasso-type algorith-
m, while the number of states has to be predefined. [21] presents a
kernel reweighted l1-regularized auto-regressive procedure to esti-
mate the network structure for each time stamp.

In the second category, the network structures keep stable in a pe-
riod. [12] employs a dynamic linear model with Markov switching
for estimating time-dependent gene network structures. However
this approach assumes that there is a fixed (user-specified) number
of distinct networks or phases, and the switching between phases
is modelled via a stochastic transition matrix that requires an esti-
mation of many parameters. Some research relax the homogeneity
assumption in dynamic Bayesian networks using multiple change-
points, which segment the time series by changepoints firstly, and
then fit an invariant structure to each segment [5] [23]. However,
these methods is not suitable for networks whose time lag can not
be ignored.

To extend conventional methods, which only aim to infer the dy-
namic network structures, our work builds on recent research in
combining dynamic Bayesian networks with adaptive lag estima-
tion. Different from the previous approaches [18] [15] which only
learn the network structure by feature selection, we also consider
the sample scarcity when infer the network structure of each seg-
ment.

Our work is also related to some works which focus on learning
the lags from temporal data. For example, the work [4] proposes to
estimate the maximum lag existing in the temporal variables based
on order statistics. A maximum likelihood (ML) estimator is de-
veloped for determining time delay in [17]. However, these works
only focus on inferring the lag from temporal data while the rela-
tionships are not considered at the same time. In this paper, we aim
to learn the dependency relationships and the lag interval simulta-
neously from data.

3. PROBLEM DEFINITION
Given p nodes, where the observed variablesX1, ..., Xp, we aim

to discovery how the network structure varies by time. In this pa-
per, we assume that the network structures remain unchanged in a
period of time and the lags of different variables probably are dis-
tinct.

For example, in the Fig.1, the network structures are different in
the first segment and the last segment. In the first segment, for X2,
both X1 and X3 are influential factors, and the lag is 1 and 2 re-
spectively. However, in the last segment, only X3 is the influential
factor, and the lag is 1.

Given a N -by-p data matrix D, where the columns correspond
to the p nodes and the rows correspond to N temporal observation-
s, let yi,t denotes the target variable selected from X associated
with node i at the time point t ∈ 1, ..., N , and let Xi,t denotes the
variable Xi at time t. In our model, the time series is segmented by
k changepoints ξ. Table 1 lists the notations to be used extensively
in the rest of this paper.
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Figure 1: Illustration of the dynamic dependency network with
varying lags.

Given a fixed structure coefficient matrix β, and the lag matrix
Ls,i. We follow [18] and apply a linear Gaussian regression model
to each target variable:

yi,t =

p−1∑
j=1

Xj,t−Ls,jβs,j + εi, j 6= i (1)



Table 1: Notation explanation
Notation Description
X The observed variables
y The target variable selected fromX
p The dimension of all the observed variables
s The index of segment
N The length of observations
k The number of segments
ξ The vector of changepoints
β The matrix of regression coefficients
L The matrix of lags

where s is the segment index which time t belongs to, and εi is the
noise, which is Gaussian distributed with zero mean and variance
σ2.

The optimal lags and structures are obtained as follows:

argmin
L,β,ξ,k

k+1∑
s=1

p∑
i=1

ξs+1∑
t=ξs+1

∥∥∥∥∥yi,t −
p−1∑
j=1

Xj,t−Ls,jβs,j

∥∥∥∥∥
2

2

+ λ ‖β‖

(2)

4. PROPOSED MODEL
In this paper, we propose a method which learns the dynamic

network structures with lag estimation. In the proposed approach,
we decompose the problem of estimating the time-varying network
structures into two procedures along different axes. The first proce-
dure is to search the optimal changepoints along the time axis; and
the second one is to estimate the network structures and the adap-
tive lags simultaneously along the axis of variable set. One benefit
of the decomposition is to reduce the estimation problem into a set
of atomic optimizations.

Given the changepoints, to avoid the sample scarcity, we give
every segment s a weight ωs and use all the weighted segments as
the sample set to learn the network structure as well as adaptive
lags for one segment. To uncover the network structures, we add a
sparse prior for β, instead of sampling network topology structure
like [18], which can reduce the sampling times. Fig.2 shows the
plate notation for our model.

XXX Y

βL

ω ξ k

λ T 

μ h

Weighed Segment

Learning Network 
Structure with Lags

Figure 2: Plate notation for the DBAL model. Blank circles are
observations, shaded circles are latent variables and the vari-
ables in squares are model parameters.

4.1 Weighted Segment
Firstly, we assume that the number of changepoints k is sampled

from a truncated poisson distribution with mean µ and maximum
kmax = N − 1.

p(k |µ ) ∝ µk

k!
{k < kmax} (3)

Here µ can be interpreted as the expected number of changepoints.
Following [5], µ is drawn according to a Gamma distribution µ ∼
Ga(a, b) where the shape parameter a and the scale parameter b
should be chosen appropriately so that the prior probability de-
creases when the numbers of changepoints increase.

Given k changepoints, we assume that the changepoint positions
vector ξ = {ξ1, ..., ξk} takes only nonoverlapping and uniformly
distributed integer values.

p(ξ |k ) = 1/

(
N − 1
k

)
(4)

It is a reasonable assumption that the data in the same segment
share the same network structure. Hence, we need to learn the net-
work struture of each segment instead of each data. However, only
using the data from one segment may lead to the scarcity of the
training samples. In this paper, we assume that the network struc-
tures of temporally adjacent segments are more similar than those
of segments temporally far away [6]. According to this, we use the
data from all the segments with different weights as the training set
to learn the network structure and adaptive lags for one segment.

When we estimate the network structure of the jth segment, the
weights of other segments are defined as follows:

wi =
Kh(tci − tcj)

k+1∑
i=1

Kh(tci − tcj)
(5)

where Kh(·) is a symmetric nonnegative kernel function and h is
the kernel bandwidth. tci and tcj are the temporal center points
of the ith segment and the jth segment, respectively. Here we use
the distance between the temporal center points of two segments
to represent the distance between these two segments. The smaller
the distance between the segment i and the target segment j, the
larger the weight of segment i. In this paper, we use a Gaussian
RBF kernel:

Kh(t) = exp(− t
2

h
) (6)

Different time points at the same segment are equally treated by
assigning them the same weight in the proposed method. Hence,
the likelihood to estimate the network structure of one segment is
described as follows:

p(yi |β,X,L ) =

k+1∏
j=1

ξj∏
t=ξj−1

N(yi,t |Xt βj,:, σ
2
0)
wj (7)

where the variable Xi,t is determined by the lag Ls,i , which de-
notes the lag of Xi in the sth segment. Given L(s, :) for the sth
segment, Xt = [x1,t−L1 , ..., xp−1,t−Lp−1 ]. βj,: is the coefficient
for this segment, and the variance of additive Gaussian noise is σ2

0 .
Additionally, we define ξ0 = 0 and ξk+1 = N .

4.2 Learning Network Structure with Lags
The proposed method not only uncovers the dynamic network

structures, but also learns the corresponding lags for each segmen-
t. We assume that the maximum time delay of the effect period
for all segments is T , then the values of the L:,i for each segment
are both within the interval [1, T ]. Here we assume that the hyper-
parameters L:,i are sampled from uniform distributions:

Li ∼ uniform(1, T ) (8)

In order to control the sparsity of regression coefficients β. We
use the spike and slab prior[16] [9] which is the prior that puts
a positive probability mass on values equal to zero for the model



coefficients of each variable. We introduce a matrixZ whereZ(i, :
) is a p−1 binary latent vector Zi,1, ..., Zi,p−1. Each Zi,j indicates
whether βi,j is zero(Zi,j=0) or different from zero (Zi,j=1). When
Z is known, the prior for β is defined as:

p(β |Z ) =

k+1∏
s=1

p−1∏
i=1

[Zs,iN(βs,i |0, ν0 ) + (1− Zs,i)δ(βs,i)]

(9)
where δ(·) is a Dirac delta function, also known as a point proba-
bility mass centered at 0,N(·|0, v0) is a Gaussian density with zero
mean and a specific variance ν0 (the slab).

Here the value of ν0 controls the shrinkage of the coefficients
which are different from zero. If ν0 is large, the coefficients of the
groups which are different from zero are barely regularized. Con-
versely, if ν0 is small, these coefficients are strongly shrunk toward-
s zero. The parameter Z is sampled from a multivariate Bernoulli
distribution:

p(Z) = Bern(Z |p0 ) (10)

where p0 = [p0,i,1, ..., p0,k+1,p−1]. p0,s,i is the prior probability
that the coefficients ofXi in the sth segment is different from zero.

From the hierarchical structure of the overall parameter space,
we obtain the joint probability distribution over all parameters Θ =
(k, ξ,L,β,Z) as follows:

p(Θ|X,y, λ) ∝ p(k|λ)p(ξ|k)p(β|z)p(z)p(L)p(X|L)
p(y|X,β, σ,L)

(11)

5. PARAMETER ESTIMATION
Since the overall parameter space of the proposed time-varying

network structures model is the union of the parameter spaces of all
segments delimited by k changepoints, the dimension of parame-
ters for the model is unknown and can vary substantially. Moreover,
the posterior probability is intractable to sample. Hence, in order to
simultaneously consider all possible combinations of changepoints
and network structures within the different segments, we propose a
novel algorithm which incorporates the RJMCMC procedure [11]
and the Expectation Propagation (EP), where the changepoints are
selected by RJMCMC procedure and the intractable posterior prob-
abilities can be approximated by easy ones through EP.

Algorithm 1 Function Update_state(Current state,Equation e)
Input: Current state, Equation e
Output: New state
1: Evaluate Acceptance probability A according to Equation e
2: Sample u ∼ U[0,1]

3: if u ≤ A then
4: Return the updated state
5: else
6: Return the current state
7: end if

In order to traverse the parameter space of unknown dimension,
we propose here four different update moves: birth of a new change-
point; death of an existing changepoint; shift of a changepoint to a
different time-point; and update of the relationships within the seg-
ments. These moves occur with probabilities bk, dk, qk, tk respec-
tively, depending only on the current number of changepoints k and
satisfying bk + dk + qk + tk = 1.

A changepoint birth or death acceptance is performed without
generating the regression model parameters for the modified seg-

ment. The integration over β yields,

p(k, ξ,Zs,X,y,L)

∝ λk(N−1−k)!
(N−1)!

p−1∏
j=1

Bern(zs,j |p0,s,j)(1/(T − Ls,i))

[Zs,jN(0|ms,j , v0 + vs,j) + (1− Zs,j)N(0|ms,j , vs,j)]

(12)

where

vs
−1 =

1

σ2
0

X̃s
T
X̃s vs

−1ms =
1

σ2
0

X̃s
T
ỹs

ỹst = yt ∗
√
wg(t) x̃st = xt ∗

√
wg(t)

(13)

and g(t) denotes the segment index time t belonging to.

Algorithm 2 Procedure for Estimating Dynamic Dependency Net-
work Structures with Estimation of Lags
Input: dataX and y, the maximum number of changepoints kmax
Output:k, ξ,βs,L,z
1: Initialization:k, ξ
2: Iteration i:
3: sample µ ∼ µ[0, 1]
4: if u ≤ b then
5: consider changepoint birth

Propose a new changepoint ξ∗|ξ ∼ u{3,...,N}\{ξ}
Update_state(Current state,Equation 14)

6: else if u ≤ b+ d then
7: consider changepoint death

Choose a changepoint ξ∗ ∈ ξ to be deleted
Update_state(Current state,Equation 15)

8: else if u ≤ b+ d+ s then
9: consider changepoint shift

Randomly choose a changepoint ξ ∈ ξ shift to a new changepoint
ξ∗|ξ ∼ u{3,...,N}\{ξ}
Update_state(Current state,Equation 16)

10: else
11: Update the network structure of every segment.
12: end if
13: i← i+ 1 and go to 4

The RJMCMC acceptance probability for a changepoint change
(’birth’,’death’,’shift’) can be written as :

A = min(1, r)

where r = (posterior distribution ratio)× (proposal ratio)
× (Jacobian). The move is accepted with probability min(1,r).

We use Pjoint to represent the joint distribution of parameters
shown in the Equation 12 and P ∗joint denotes the updated joint dis-
tribution. For different moves, the probability r is given as follows
respectively.

rbirth =
P ∗joint(N − k − 1)(p− 1)!

Pjointλc!(p− c)!
(14)

rdeath =
P ∗jointλ(p− 1)!

Pjoint(N − k)c!(p− c)!
(15)

rshift =
P ∗joint
Pjoint

(16)

where c is the number of dependent variables in the new segment.
We omit the tedious derivations and only present the process of the
entire algorithm, as shown in Algorithm 2.

Update the network structure of every segment. Computing
the β and Z of each segment requires sampling them from poste-
rior probability. Due to the intractability of posterior probability of



β and Z as shown in the Equation 17 and Equation 18, we apply
the expectation propagation(EP) [20] [14] to perform the inference
approximately.

p(β |Z,L, ξ , k) ∝ N(y
∣∣Xβ, σ2 ) [ZN(β |0,v0 ) + (1− Z)δ(β)]

(17)

p(Z |β,L , k, ξ) ∝ Bern(Z |p0 ) [ZN(β |0, ν0 ) + (1− Z)δ(β)]
(18)

The essence of the expectation propagation approach is to choose
a variational distribution Q to approximate the actual joint distri-
bution , so that the Kullback-Leibler divergence (KL-divergence)
between the probability p(β,Z) and its approximation Q is min-
imized. Here we approximate the joint distribution of βs and Zs
using Q as follows:

Q(βs,:,Zs,:) = N(βs,:|ms,vs)

p−1∏
i=1

Bern(Zs,i|σ(p0,s,i)) (19)

The posterior probability of β andZ can be obtained approximate-
ly during the process of EP algorithm. See [14] for details and an
explicit expression.

As a convergence diagnostic we monitor the potential scale re-
duction factor (PSRF)[8], computed from the within-chain and between-
chain variances of marginal network structure posterior probabili-
ties. Values of PSRF≤ 1.1 are usually taken as indication of suffi-
cient convergence.

6. EXPERIMENT
Experiment Setup. To evaluate the effectiveness of our mod-

el, we conduct thorough experiments on synthetic datasets and real
world datasets. Baselines used for comparison include static las-
so granger(SLG) model[1], Time-Varying Dynamic Bayesian Net-
works(TVDBN)[21], NHDBN (Non-homogeneous DBNs) [6], and
the TLHL model [25]. The dynamic Bayesian model with adaptive
lags we proposed is called DBAL for short. To illustrate the im-
portance of time lags in learning dependency network structure, we
also compare with our simplified model which removes the time lag
learning part (DBNL). Table 2 illustrates the model characteristic
of comparative methods.

Table 2: Comparative Methods
Method network state varying form lag

SLG static / T
TVDBN dynamic time point 1

DBN static / 1
NHDBNs dynamic period 1

DBNL dynamic period 1
TLHL static / learned

In our model, the range T of time lags is 10, the shape pa-
rameter α = 1 and the scale parameter β = 0.5. For TVDB-
N, we set the bandwidth parameter h of the Gaussian kernel ac-
cording to the spacing between two adjacent segments such that
exp(− N2

49h
) = exp(−1). For the static granger lasso, we selec-

t the penalty parameter λ using the cross validation. For the static
models SGL and TLHL, we set the maximum lag as 10. While for
TVDBN and NHDBN, the time lags are set to 1 as applied in orig-
inal works [21][6].

6.1 Synthetic data
Data generation. We generate 10 networks with 7 nodes each

(p = 6), and the length of observation series of each node is 500
(N = 500). The simulation procedure involves three main step-
s. Firstly, to simulate changes in the network structures, we set 4
changepoints (except the beginning and end) and the localization
vector is ξ = [40, 200, 300, 400, 430] in the first data set.

Then, for each segment h, we set the network structure and then
generate the corresponding regression coefficient matrix βh (p ×
p). We choose the regression weights such that βhi,j = 0 if there
is no edge from j to i in the network structure for segment h, and
βhi,j ∼ N(0, 1) otherwise. Meanwhile, we randomly generate the
lag matrix L, where Li,j ∼ U [1, 10].

Last, we generated time series of length l which is the length
of segment h using a linear regression model: X(t) = βhX(t −
L) + ε where X(t) = [X1(t), ..., Xp(t)]

′ is the 6 × 1 vector of
observations at time t, andX(t−L) = [X1(t−Li,1), ..., Xp(t−
Li,p)]

′ where i is consistent with the subscript of Xi(t). We added
Gaussian observation noise εi ∼ N(0, 1) independently for each
observation of node i.

Experimental Results. We first compare the learned β∗ of net-
work structure with the ground truth network structure parameter
β. As the Fig.3 shows, Fig. 3(a) contains four ground truth coef-
ficient matrixes for the four segments and Fig. 3(b) contains four
learned coefficient matrixes. Each column corresponds to one seg-
ment of the time series data. The true coefficient β varies over the
segment. From the comparison on each column, the learned coef-
ficient matrixes are similar with the ground truth which indicates
that our model is able to learn the dynamic network structure.

Fig.4 compares the ground truth time lags with the time lags
learned by our model. Fig. 4(a) contains four true time lag ma-
trixes corresponding to each segment, while Fig. 4(b) contains the
residual matrixes between the time lag matrixes we learned and the
ground truth time lag matrixes. The time lag varies by differen-
t variable dimensions and segments. Most elements in the residual
matrixes tend to be zero which means the time lags we learned are
close to the ground truth.
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(a) The ground truth β
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(b) The learned β∗

Figure 3: Comparison between the true β and learned β∗.

We use the F1-score to evaluate the performance in terms of net-
work structure learning, where the F1-score is computed as follows:
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(a) The ground truth L
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(b) The residual matrix ∆L between learned lags and the truth

Figure 4: The true lags L and the residual matrix ∆L between
learned lags and the truth.

Pre =

∣∣{i, j |βi,j 6= 0, β∗i,j 6= 0
}∣∣

|{i, j |βi,j 6= 0}| ,

Rec =

∣∣{i, j |βi,j 6= 0, β∗i,j 6= 0
}∣∣∣∣{i, j ∣∣β∗i,j 6= 0

}∣∣ ,

F1 =
2 · Pre ·Rec
Pre+Rec

.

where β∗ denotes the regression coefficient matrix we learned, and
β is the true coefficient matrix we set.

From the Fig.5, we can see that the proposed DBAL model achieves
the best performance among the competing methods. Since the TLH-
L model learns the optimal time lag to get a smaller error, the F1
score of it is higher than the other methods. As for the static mod-
el, such as SGL and TLHL, they can not capture the dynamic of
networks although the F1 scores are not bad. Overall, the dynam-
ic models outperform the static models except the TVDBN. The
TVDBN method which learns network structures varying by time
point with time lag set to 1 has the worst result, which is probably
caused by missing important information and over-fitting. The N-
HDBN model learning the dynamic network structures varying by
segments, which is consistent with our assumption, gains a compet-
ing result. The DBNL model without time lag learning part from
the proposed model has a significant decrease in F1 score, which
indicates the importance of adaptive time lag estimation in network
structure learning.

Besides, Fig.6 shows the log-likelihood varies over the itera-
tion in network structure learning process of our model. The log-
likelihood tends to converge at about the 6000th iteration.

6.2 Air Quality Data
As described in Section 1, time lag is a key feature to interpret the

dynamic network structure and temporal dependency, especially for
spatial networks. In this section, we evaluate our DBAL model on
a real-world air quality dataset collected from Beijing, China.

The air quality data is collected by 35 air quality monitoring sta-
tions, deployed in different sites in Beijing. The spatial distribution
of stations is shown in Fig.9. Each air quality monitoring station
measured the hourly air quality data such as PM2.5 and meteoro-
logical data e.g. wind, during the period 2014.12.01-2015.3.31.

Fig.7 presents the PM2.5 level of No.3 station in a blue curve and
the changepoint using a red dashed line. The changepoint learned
by DBAL model partitions the PM2.5 time series data into two seg-
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Figure 5: The F1 score of network structures learned by different
methods.
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Figure 6: Log-likelihood of Model; x-axis: number of training itera-
tions; y-axis: log-likelihood of training data

ments. In the left segment, the air condition is seriously polluted by
PM2.5. While the right segment shows the normal air quality con-
dition. Fig.8 shows the corresponding wind speed level in a blue
curve and the changepoint using a red dashed line. In both the left
segment, the average wind speed level is low and the corresponding
PM2.5 level is high. While in the right segment, the corresponding
relationship reverse. The average wind speed level is high and the
PM2.5 level is low. These segment results are quite interpretable
according to domain knowledge. The wind speed level is one of the
main factors for air quality pollution.
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Figure 7: The PM2.5 and learned changepoint.

Fig.9(a) and Fig.9(b) present the dependent stations of No.3 s-
tation with time lags for the two identified segments respectively.
The red triangle in the center denotes the target air quality mon-
itoring station, i.e., the No.3 station. Each arrow origins from the
dependent stations and points to the target station with a time lag
number. From Fig.9(a), we can see the dependent stations are in
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Figure 8: The wind speed level of No.3 station.

the near neighborhood with a small learned time lag in the seri-
ously polluted segment. While in the Fig.9(b), the dependent sta-
tions are distributed in the far distance and the corresponding time
lags tend to be large. These results are consistent with the fact that
seriously polluted air condition tend to emerge in a windless day
and good air condition is usually along with a windy day. At the
same time, the influence propagation speeds from the dependent s-
tations to the target station are small/large in a windless/windy day.
Thus the time lags in the first windless segment are small. While
in the second windy segment, the time lags tend to be large. These
identified results are believed reasonable by domain experts, which
demonstrate the proposed DBAL model is effective in learning both
the dynamic network structure and the time lags.

(a) The learned dependency of No.3 station in the first
segment.

(b) The learned dependency of No.3 station in the sec-
ond segment.

Figure 9: The dependent stations and time lags of No.3 station.

6.3 Highway Traffic Data
We evaluate our method on real-life highway traffic data. The

variables in this traffic dataset are observations collected from sen-
sors located on ramps in a highway traffic network. Each obser-
vation is the vehicle count during 15 minutes interval. In order to
study the dynamic dependency relationships of traffic stations in
the day, we use data in one day with 96 samples. There are totally
236 traffic stations, which correspond to 236 ramps. In our experi-
ment, we remove some stations where average traffic flows are less
than 100.

The dependency structures obtained by dependency learning meth-
ods are essentially important for the analysis of the traffic systems,
such as vehicle flow prediction, anomaly detection. Domain experts
can obtain the accurate dependencies from the information of up-
stream stations, and predict the state of downstream stations. The
time lags we learned companying with the network structure learn-
ing offer the time delay information between two stations.

Fig.10 presents the traffic flow in a blue curve and the change-
point using a red dashed line. The changepoint learned by DBAL
model partitions the traffic time series data into two segments. It
is obvious that the traffic flow in the first segment is much small-
er than that in the second flow. The location of changepoint is 28,
which corresponds to the 7:00am in the day. From the Fig.10, we
can conclude that there are two types of dependency relationships
of stations in one day, where one occurs from 0:00 to 7:00 and the
other one is in the rest time.
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Figure 10: The traffic flow and learned changepoint.

Fig.11(a) and Fig.11(b) present the learned dependency between
traffic stations in the two segments respectively. As for the first seg-
ment, the target station which is marked with the blue dot mainly
depends on the stations marked by red dots from the east with large
time lags. In the second segment, the target station depends on the
stations in different directions. Comparing the time lags we learned
in the two segments, the lags in the first segment are larger than
those in the second segment. These results can be explained by
the domain knowledge that the target station’s traffic flow from the
midnight to early morning mainly consists of long-distance truck-
s with low speeds, so the time lags tend to be much larger. While
in other time the traffic flow is composed by both short-distance
vehicles and long-distance vehicles from various directions. The
learned results can be further applied for traffic flow prediction and
traffic controls. The experiment on highway traffic network indi-
cates that the time lag problem actually exists in real-world traffic
network and the proposed model is effective to learn both the dy-
namic network structure and time lags simultaneously.

7. CONCLUSION
The time lag is a crucial and inevitable parameter in dynamic net-

work structure learning and understanding. In this paper, we pro-



(a) The learned dependency between traffic
ramps in the first segment.

(b) The learned dependency between
traffic ramps in the second segment.

Figure 11: The learned dependency in highway traffic network.

pose a dynamic Bayesian model which simultaneously integrates
two usually sperate tasks, i.e. learning the dynamic network struc-
ture and estimating the time lags, within one unified framework.
Then a novel weight kernel approach is proposed for time series
segmenting and sampling to avoid the sample scarcity based on
the assumption that the network structure of adjacent segments are
similar. For parameter inference, we propose an effective Bayesian
scheme cooperated with RJMCMC and EP algorithms. We evalu-
ate our model on one synthetic dataset and two real-world datasets.
Experiment results demonstrate the effectiveness of the proposed
model in learning the dynamic network structure with the adaptive
time lag estimation. Moreover, the results on air quality network
and the highway traffic network are believed reasonable and inter-
pretable by domain experts. Our model is also applicable to other
networks with time lag characteristic.

For future work, it is interesting to apply this model in other
networks. Moreover, we will extend this model with considering
context information which generate large impacts on the network
structures.
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