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ABSTRACT 

Smart home technologies provide numerous benefits for 

providing healthcare to individuals in a non-invasive manner. Our 

goal of this research is to use smart home technology to assist 

people recovering from injuries or coping with disabilities to live 

independently. In this paper, we propose an algorithmic method, 

Behavior Forecasting (BF), to model and forecast both the wake 

and sleep behaviors that are exhibited by an individual. The BF 

method consists of (1) detecting wake/sleep cycles, (2) defining 

numeric values that reflect wake behavior and numeric values that 

reflect sleep behavior, (3) forecasting the numeric wake and sleep 

values based on past behavior, (4) analyzing the effect of wake 

behavior on sleep by using wake behaviors when forecasting for 

the next sleep behavior observed, and vice versa, and (5) improving 

the performance of score prediction by using both past wake and 

past sleep scores. We evaluate the performance of our BF method 

with data collected from CASAS smart homes. We found that 

incorporating time series techniques such as a periodogram 

improves the detection of regular sleep and wake cycles. We also 

found that regardless of the utilized forecasting method, we can 

model wake behavior and sleep behavior with the minimum 

accuracy of 87%. These results suggest that we can effectively 

model wake and sleep behaviors in a smart environment. 

Furthermore, that future wake behavior can be determined from 

sleep behaviors and vice versa. 

Categories and Subject Descriptors 

Time series analysis; Ubiquitous and mobile computing/Ambient 

intelligence 

Keywords 

Machine learning; smart environments; cycle detection; behavior 

forecasting; sleep analysis 

 

1. INTRODUCTION 
Getting a good night’s sleep is important to all but elusive for 

many. Problems that occur during sleep are particularly common 

for individuals who are experiencing stress or are managing chronic 

health conditions. The relationship between wake behavior and 

sleep quality has been investigated for years. However, only with 

the maturing of pervasive computing technologies and machine 

learning is it possible to quantify sleep quality and quantitatively 

relate wake behavior to sleep quality. A smart home offers the 

capability to monitor sleep and wake behavior in naturalistic 

settings. While a large portion of the smart home research to date 

has focused on analyzing behavior patterns for health monitoring, 

less attention has been given to anticipating or forecasting 

upcoming behaviors. In the context of sleep monitoring and 

assistance, both behavior monitoring and forecasting are valuable 

for anticipating and circumventing sleep difficulties.  

Sleep is an important component in our everyday lives, and thus 

should not be considered just another activity within the smart 

home. We postulate that behavior during wake periods can affect 

sleep behavior and vice versa. Further, we hypothesize that these 

behaviors can be predicted based on prior wake and sleep patterns. 

To validate these hypotheses, we analyze data collected from 

CASAS smart homes; we evaluate the effectiveness of the 

forecasting methods with two evaluation metrics, mean absolute 

error and root mean square error. 

In this paper, we explore an algorithmic method, Behavioral 

Forecasting (BF), in which we forecast wake and sleep behavior 

using smart home data. Our BF algorithmic method consists of (1) 

using time series techniques to detect wake/sleep cycles, (2) 

defining numeric values that reflect wake behavior and numeric 

values that reflect sleep behavior, (3) forecasting the numeric wake 

and sleep values based on past behavior (independent prediction), 

(4) analyzing the effect of wake behavior on sleep by using 

previous wake behavior when forecasting for the next sleep 

behavior observed, and vice versa (cross prediction), and (5) 

improving the performance of value prediction using both past 

wake and past sleep values (joint prediction). We consider this be 

a univariate forecasting problem, as we are considering how the 

individual is behaved previously to predict how they we behave in 

the future. We evaluate of our BF method with data collected from 

actual smart home testbeds.  

 

2. SLEEP BACKGROUND  
In the majority of smart home research, sleep is viewed as just 

another activity to recognize and track. However, this is not the 

most effective use of the sleep data that is being gathered from 

smart home environments, since sleep plays a fundamental role in 

a person’s overall health and general wellbeing throughout life. Our 

goal is to analyze and forecast sleep behavior. Accomplishing this 

goal will assist researchers in identifying sleep problems from 

sensor data, which often arise in conjunction with problems that 

occur during an individual’s waking hours. To understand the 

relationship between sleep and wake behaviors, we first review the 

common components that comprise a single night’s sleep and 

discuss the impact that sleep has on wake behavior.  

2.1 Stages of Sleep 
There are two main types of sleep: rapid eye movement (REM) 

sleep and non-REM sleep. The non-REM sleep can be further 

broken down into four stages of sleep. When a person sleeps, he or 

she cycles through non-REM and REM sleep, spending the 

majority (approximately 75%) of the time in non-REM sleep. The 

sleep cycle begins with non-REM sleep. In stage 1, at the initial 

onset of sleep, people will often believe that they have not actually 

fallen asleep; if the person is currently in a sleep cycle, then this is 

the stage in which he or she transitions out of REM sleep. From 



stage 1, the person then progresses into stage 2 of sleep, in which 

he or she is no longer aware of the surroundings and his or her 

breathing and heart rate become regular. As the person transitions 

into stages 3 and 4 of sleep, these are the deepest and the most 

restorative stages of sleep. In these stages, blood pressure drops and 

breathing becomes slower, the person’s muscles relax, the blood 

supply to the muscles increases, and hormones are released, 

promoting tissue growth and repair. These are also the stages in 

which energy is restored. After going through the stages of non-

REM sleep, we reverse back through the stages to enter into REM 

sleep. During REM sleep, a person’s body is immobile and his or 

her eyes move. This is also the stage when the sleeper’s brain is 

active and when dreaming happens. In this stage, energy is 

provided to the brain and the body to ultimately support wake 

performance [1]. Figure 1 illustrates the stages of sleep that take 

place throughout the night [2]. 

 

2.2 Sleep Quantity vs. Sleep Quality 
There are two common areas that are evaluated with sleep: sleep 

quantity and sleep quality. Sleep quantity is the amount of sleep a 

person gets. Sleep quantity is subjective to an individual; thus, the 

amount of sleep required is whatever is needed for that individual 

to make them feel rested. The other aspect of sleep assessment, 

which is often considered more influential, is sleep quality. Sleep 

quality indicates how well a person sleeps throughout the night. 

While there are many ways to determine sleep quality, there is not 

a single standard for evaluating sleep; however, a widely utilized 

approach is the Pittsburgh Sleep Quality Index [3].  

2.3 Pittsburgh Sleep Quality Index (PSQI) 
The PSQI contains 19 self-report questions and 5 additional 

questions that are rated by either a partner sharing the bed or a 

roommate. The questions are classified into seven categories that 

combine to develop the PSQI score. These categories are: (1) 

subjective sleep quality, (2) sleep latency, (3) sleep duration, (4) 

habitual sleep efficiency, (5) sleep disturbances, (6) use of sleep 

medications, and (7) daytime dysfunction. Since the PSQI does not 

limit the self-report questions to highlight just one category in sleep 

analysis, it has become a common tool for measuring sleep and it 

has been shown to provide an acceptable score across multiple 

participation groups (i.e., insomnia) [4]. Therefore, in this research, 

we focus on the PSQI sleep analysis when developing sleep scores 

from the smart home data.  

2.4 Impacts of Sleep 
Both sleep quantity and quality have major impacts on mental 

health and physical health. In the case of physical health, sleep 

maintains the body’s circadian rhythm. Circadian rhythms run a 

large number of biological processes that occur throughout the 

body during the day including body temperature, sleep-wake 

cycles, and hormone release [5], [6]. Not getting the proper amount 

and quality of sleep can throw off the circadian rhythm which will 

then throw off the biological processes in the body, greatly 

impacting how a person performs throughout the day.  

  Furthermore, not only does poor sleep impact the circadian 

rhythm, which in turn influences biological processes throughout 

the day, but as we saw with the stages of sleep, poor sleep also 

impacts the restorative stages of the sleep cycle, as the person does 

not spend as much time in those stages as necessary. It has been 

shown that poor sleep quality can cause people to be less productive 

during work [7]. This is in part due to the fact that sleep deficiency 

can alter brain activity, which immediately affects how a person 

will think, react, and behave overall. With sleep impacting daily 

behavior and wellbeing, lack of sleep has repercussions on how 

people behave throughout the day. 

  

3. Defining the Wake/Sleep Cycle 
Since sleep can have a dramatic impact on how a person 

performs throughout the day, we postulate that sleep must be 

analyzed separately in a smart home system, rather than being 

treated as just another activity when monitoring or predicting health 

and wellbeing. Thus, instead of creating an overall daily score, we 

create separate wake and sleep scores that will be used in our 

univariate forecasting method to predict the behavior that the house 

occupant is experiencing.  

As seen in Figure 2a, using the typical 24-hour day can be 

problematic. This is due to the fact that with the typical 24-hour 

day, starting and ending at midnight, normally places the end of the 

cycle change in the middle of a sleep period.  As a result, using this 

standard day notion will not provide a ready basis for measuring 

the corresponding day’s sleep quality.  Therefore, in the BF 

method, rather than break an individual’s routine into daytime and 

nighttime periods, we propose to divide the routine into wake and 

sleep periods. We then look for cycles that end with the completion 

of the end-of-cycle sleep activity (last sleep activity before a cycle 

change) and the next cycle begins with the first wake activity after 

the end-of-cycle sleep activity 

Since the cycle is dependent on the individual’s sleeping pattern, 

we are no longer constrained to a 24-hour cycle duration. Instead, 

we investigate the use of time series techniques to automatically 

detect the sleep/wake cycle and adapt it to each person. In this paper 

we consider two cycle detection methods that we describe in the 

next sections: RUle based Cycle Detection (RUCD), and 

PEriodogram Influenced Rules Cycle Detection (PEIRCD).  

3.1 Rule based Cycle Detection (RUCD) 
The first cycle detection framework considered is a rule based 

cycle detection (RUCD) method. In the RUCD method, the current 

cycle ends with the completion of the end-of-cycle sleep activity, 

which is determined by taking into consideration two rules: (1) the 

time since the cycle began (cb) and (2) the duration of the sleep 

activity (sdur).  

To determine an appropriate value for cb, we need to first 

determine an approximate cycle length. As previously stated, all 

organisms have a series of recurring physiological changes that 

Figure 1: Stages of sleep throughout the night.  The 

graph shows the stages of sleep that take place during 

the night as the hours of the night progress. 



Figure 2: Illustrates the cycle detection methods utilized in this work. Each graph shows 8 days of data collected from a smart home. 

The black lines indicate the activity that is taking place at that time, when the activity line falls below zero (horizontal line), a sleep 

activity (i.e., Sleep, Nap) is taking place; otherwise a wake activity is taking place (i.e., Eat, Relax, Work).  (a) Shows the cycle 

changes using when the typical day (changes at midnight). The days are distinguished by alternating white and yellow backgrounds.  

(b) Shows the cycle changes using the RUCD method. The days are distinguished by alternating green and white background.    

(c) Shows the cycle changes using the PEIRCD method. The days are distinguished by alternating pink and white background. 
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take place during their day; these are called circadian rhythms. In 

humans, the circadian rhythm is roughly on a 24-hour time frame, 

since it is influenced by daylight hours; furthermore, a well-known 

circadian rhythm is the sleep-wake cycle [8]. Thus, we still consider 

roughly a 24-hour time frame. Additionally, studies have shown 

that adults typically report sleeping between 6 and 8 hours [9]–[11]. 

Therefore, we determine that an end-of-cycle sleep activity begins 

at least 18 hours since their cycle began.  

The second rule that is considered is the duration of the actual 

sleep activity. Studies show that people report typically sleeping 

between 6 and 8 hours. However, a long nap can last as long as 1 

to 2 hours [12]. We split the difference between the maximum nap 

time (2 hours) and the minimum sleep time (6 hours), to determine 

that an end-of-cycle sleep activity duration is at least 4 hours.  

The RUCD method considers two rules when evaluating whether 

a cycle change should take place: an end-of-cycle sleep activity 

occurs at least 18 hours after the individual’s cycle began (cb=18 

hours) and ends with a sleep activity that lasts at least 4 hours 

(sdur=4 hours). The cycles found by RUCD are shown in Figure 

2b.  

It is worth noting that in the RUCD method the cycles are 

changed only on a sleep activity. Therefore, if the house occupant 

does not sleep at home, a cycle change will not be occur. 

3.2 Periodogram Influenced Rules Cycle 

Detection (PEIRCD) 
As previously stated, sleep is subjective to each individual. Since 

the RUCD method is dependent information found in sleep 

research based on the average person, it is likely that this method 

will not work for everyone, especially someone with sleep 

disorders. Therefore, we also consider a data-driven cycle detection 

approach. Specifically, we investigate using a periodogram for 

cycle detection. We then combine the rule-based and periodogram-

based cycle detection approaches, resulting in a periodogram-

influenced rules cycle detection (PEIRCD) method.  

 A useful time series technique for this challenge is spectral 

analysis. Spectral analysis decomposes time series data into a 

sequence of sine and cosine waves. We utilize a periodogram to 

identify the strength of importance or strength of the frequencies 

(or periods) to explain the variations in the time series data. By 

examining the strengths of the frequencies, we take the frequency 

that has the highest strength as the frequency that is most 

representative of the data. Once we have the most important 

frequency, the cycle length is 1/frequency.  

For the houses that were explored in this work, the periodogram 

mainly highlighted 3 frequencies, 8 hours, 12 hours and 24 hours, 

as illustrated in Figure 3.  Since 24 hours had the highest value, we 

found that the cycle length was 24 hours. It is worth noting that 

there were minor variations in cycle length on a month to month 

basis; these variations are dependent on whether the participant 

consistently slept at home during the month.  

While the periodogram identifies the cycle length, we did not use 

just the periodogram when determining cycle lengths. This is 

because the periodogram relies strictly on the duration of the cycle 

without using any other outside information. Therefore if the 

participant has any outside influences that causes their schedule to 

change slightly, the cycles detected are going to be slightly off as 

well. This is problematic since using just the periodogram detected 

cycle lengths may trigger a cycle change in the middle of a sleep 

activity that will impact the sleep analysis, or cause a cycle change 

to be after the end-of-cycle sleep activity has already taken place. 

Thus, we need a method that combines both RUCD and the 

periodogram cycle detection; this is the PEIRCD method. To 

incorporate both the rules from RUCD method and the information 

gained from the periodogram cycle detection, we begin by slightly 

adjust the rules from the RUCD method. In the PEIRCD method 

we still define a cycle based on: (1) cb, the time since the cycle 

began and (2) sdur, the duration of the sleep activity. To incorporate 

all information we gained from the periodogram, we add cycle 

length, cl, as an additional periodogram-influenced parameter. 

To add the information from the periodogram into the cb rule, 

we consider the cycle length found by the periodogram and 

determine at what point in the cycle the participant will start a sleep 

activity. We use the sine wave from the periodogram to roughly 

indicate when the individual will start a sleep activity.  The cycles 

found by periodogram are illustrated in Figure 4. 

From the sine wave, we see that sleep typically starts in the last 

quarter of their wake/sleep cycle. Therefore, in regard to the time 

since the time began rule, we consider the cycle length found by the 

periodogram (typically 24 hour cycle), and we begin looking for a 

cycle change points during a sleep activity that occurs in the final 

quarter of their current cycle (cycle length − (cycle length/4)).  

To determine sdur, the duration of the sleep activity rule, we 

compare the duration of the detected sleep event against multiple 

sleep durations.  We begin with the sleep duration that was used in 

the RUCD method of 4 hours, since that is the standard time that is 

used to distinguish between a long nap and a short sleep activity. 

However, there are instances in which people sleep less than 4 

hours in the smart home during one activity occurrence. Therefore 

we need to develop a more robust method. Since we use the sleep 

activity as the pivotal activity to change the cycle; the PEIRCD 

change preference is to change the cycle on a sleep activity rather 

than forcing a cycle change without sleep. We still need to be aware 

of the differences between a sleep activity and a nap activity. 

Therefore, if the periodogram has indicated that a cycle change is 

needed and a sleep activity has taken place, we only initiate a cycle 

change if the participant has slept at least 1 hour (the duration of a 

long nap). 

The new rule we have incorporated is that if the periodogram 

cycle detection has indicated that a cycle change point has occurred, 

Figure 3: Cycle information gained by the peridogoram. 

Illustrates the important cycle length distinguished by 

the periodogram. The graph shows the strength of that 

cycle length for cycle lengths between 0 and 34 hours.    



and there is not a sleep activity occurrence, we force a cycle change. 

This allows us to have appropriate cycle lengths when the house 

occupant sleeps somewhere other than in the home. 

Therefore, the PEIRCD method utilizes the modified rules from 

RUCD that utilizes information gained by the periodogram cycle 

detection, in which a cycle change point is tested for a sleep activity 

if the sleep activity has started in the final fourth of the participants 

found cycle (cb=cycle length − (cycle length/4)), and the 

participant has at least 1 hour of sleep (sdur=1). While the PEIRCD 

method sets a cycle change point on the sleep activities whenever 

possible, if there is not a sleep activity when the cycle should 

change the PEIRCD method forces a cycle change point (cl=cycle 

length found by periodogram).  The cycles found by PEIRCD are 

illustrated in Figure 2c.  

 

4. UNIVARIATE FORECASTING 
The goal of this work is to forecast wake and sleep behavior in 

order to anticipate potential sleep problems and to understand the 

relationship between wake and sleep. There are numerous 

approaches that can be taken to achieve this goal. We choose to 

draw from time series literature in which statistical forecasting 

techniques are used to predict the value of a single numeric 

parameter (e.g., daily temperature, stock market values). Time  

series forecasting techniques are typically univariate, which means 

that they forecast values for only a single variable. In order to utilize 

these techniques we need to compress all of wake behavior into a 

single numeric parameter and all of sleep behavior into a single 

numeric parameter.  

We note that the wake and sleep values themselves may not be 

easily interpreted in terms of wake behavior quality or sleep quality. 

However, if the wake/sleep numbers are reflective of actual 

behavior then they can be predicted. In addition to creating 

predictable numeric values, or scores, for wake and sleep behavior, 

we also want a methodology for scoring that is consistent with the 

literature on wake and sleep behavior. Once these scores are 

defined we can use time series techniques to forecast them based 

on past wake and sleep behavior. 

4.1 Sleep Score 
For our sleep score, we use the PSQI as a reference. Below, we 

explain which components of the PSQI were incorporated. It is 

worth noting that the PSQI asks the participant about their sleep 

behavior during the previous month, but here we adapt the scores 

to a daily schedule. We also note that scores are generated based on 

information collected from our CASAS smart home system [13]. 

Component 1: Subjective Sleep Quality was not included. 

Component 2: Sleep Latency was not included. 

Component 3: Sleep Duration. We use the total time the 

participant has spent in an automatically recognized sleep activity 

as the duration.  

Component 4: Habitual Sleep Efficiency. To determine the 

habitual sleep efficiency, we consider the ratio of the duration in 

the sleep activity (not including interruptions) over the total 

duration in the sleep activity including interruptions.  

Component 5: Sleep Disturbances. We measure how often the 

participant gets out of bed during the sleep activity for any reason 

(i.e., getting out of bed to use the bathroom). Additionally, we can 

potentially monitor temperature disturbances. We correlate sensor-

based temperature data with the sleep measures of duration, 

interruptions, and habitual sleep efficiency. If a strong correlation 

(r > 0.5) is found between temperature values and one or more of 

these measures, then that temperature sensor is included in the sleep 

disturbance component. 

Component 6: Use of Sleep Medication was not included. 

Component 7: Daytime Dysfunction was not included.  

Figure 4: Illustrates 8 days of data collected from a smart home. The black lines indicate the activity that is taking place at that 

time. When the activity line falls below zero (horizontal line), a sleep activity (i.e., Sleep, Nap) is taking place; otherwise a wake 

activity is taking place (i.e., Eat, Relax, Work). Shows the cycle changes using a typical 24-hour day (midnight to midnight). Shows 

cycles found by the periodogram and highlights approximately when during the cycle that the end-of-cycle sleep activity takes 

place. A sine wave is shown to illustrate the cycle length, with the red boxes indicate when an end-of-cycle sleep activity; the days 

are distinguished by alternating blue and white backgrounds 



Each of the component receive a score between 0 and 3, the 

components are then combined to develop the overall sleep score 

for that wake/sleep cycle.  

 

4.2 Wake Score 
Unlike sleep scoring, there is no single theory or measure that is 

commonly used to assess the quality of wake behavior or to 

quantify it. In this paper, we are not attempting to quantify the 

quality of wake behavior. We are defining a single numeric value 

that is reflective of the activity-based sensed behavior for the 

purpose of studying the correlation between wake behavior (and 

changes in wake behavior) and sleep behavior (and changes in sleep 

behavior). Because our wake score is built upon information that 

can be detected by smart home sensors and labeled by activity 

recognition software, our wake score is the combination of the 

activities seen throughout the wake period in the cycle. Each 

activity that is seen in the cycle is scored individually (i.e., if the 

Eat activity takes place three times a day, there will be three Eat 

scores). Our activities score is built from three activity-centric 

components: the time since the same activity last occurred, activity 

performance statistics, and activity level statistics. 

Time Since Last Activity. This is the amount of time that elapsed 

between when the current activity was started and when the activity 

was previously performed.  

Activity Performance Statistics. We consider two activity 

performance statistics: (1) the duration of the activity without 

including any interruptions and (2) the number of interruptions that 

occurred during the activity. 

Activity Level Statistics. We consider two additional statistics for 

each activity. (1) How often the occupant set off the overhead 

sensors while completing this activity (movement). (2) The ratio of 

the time spent in the activity to the total time it took to complete the 

activity.  

Each wake activity is scored as follows:  

wake activity score = TSL +
∑ APS + ∑ 0.5 ∗ ALS

|APS| + |ALS|
 

To develop the overall wake score, the individual wake activity 

scores are summed.  

A troublesome activity that takes place throughout the day is the 

‘Other’ activity; this is assigned when the activity does not fall into 

a predefined category. As this is such a widely used activity label, 

we put a weight of 0.1 on all the ‘Other’ activities so the overall 

score is not over-fitted to the ‘Other’ activity category.  

4.3 Wake and Sleep Score Summary 
Since the sleep score follows the PSQI method, lower sleep 

scores indicate better quality of sleep. However, with the wake 

score, a higher score or a lower score is not better, the wake score 

is simply a score that represents the behavior pattern exhibited 

during that particular cycle.  

It is important to note that creating the wake score for that cycle, 

the individual wake activity scores were simply summed; similarly 

creating the sleep score for that cycle, the individual sleep activity 

scores were summed. This is not the only way to create the wake 

and sleep scores for the cycle, this is simply one way to accomplish 

it.  The focus of this paper is on creating scores that reflect wake 

and sleep behavior and designing techniques to forecast these 

scores.  

 

5. FORECASTING METHODS 
The overall hypothesis of this work is that we can predict 

behavior using novel independent, cross-component, and joint 

prediction techniques. Forecasting for both wake behavior and 

sleep behavior is a univariate forecasting problem, since we are 

using past behaviors to predict future behavior.  Therefore, we 

consider our Behavior Forecasting (BF) approach in which sensor 

event data is used to create scores that illustrate the behaviors of the 

participant while the participant is awake and asleep; ultimately the 

Figure 5: Behavior Forecasting approach framework. WISO: wake scores input and sleep score output. SIWO: sleep score 

input and wake scores output. 



scores will be used predict the next behavior in the sequence. Our 

BF approach is illustrated in Figure 5. 

We use the BF approach to predict the next wake behavior and 

the next sleep behavior in the sequence. To do this, features are 

extracted from the sensor event data. These features are input to an 

activity recognizer, in which the sequence of sensor events is 

classified into activity categories. With activities labeled, statistics 

for the individual activities (i.e., duration, interruption count, 

sensor event count) are computed and the individual activities are 

scored. The individual activity is scored with the wake scoring 

method if the activities take place while the participant is awake 

(i.e., Cook, Eat, Work), or with the sleep scoring method otherwise 

(i.e., Nap, Sleep). The wake behavior score for that cycle is the sum 

of the individual activity scores for the activities that take place 

while the participant is awake; the sleep behavior score for that 

cycle is the sum of the individual sleep activity scores that take 

place.   

The wake scores and the sleep scores are used for forecasting; 

each data point corresponds to one cycle. To model and test the 

forecasting method we utilized a sliding window validation 

approach, in which a window is moved through entire the dataset. 

A window consists of 𝑡 training points, which is the training set, 

and one test data point. Each training point has a fixed lag length of 

𝑙, where 𝑙 is the number of previous cycle scores. As we move 

through the dataset, we create a model with the training set and 

predict the next value after the training set, or predict the test data 

point. After the prediction is made, the window is moved forward 

one data point. This is repeated until the training window has run 

through the entire dataset. The only data points that are not 

predicted are the data points in the initial training window. 

Since we are considering both wake behaviors and sleep 

behaviors, we expand the possible forecasting methods to utilize 

the behavioral data that we have. Thus, we are interested in 

exploring three different types forecasting methods for this 

research: (1) an independent forecasting approach, (2) a cross 

forecasting approach, and (3) a joint forecasting approach. For the 

independent forecasting problem, we are interested in determining 

whether the scores created are a valid representation of the 

behaviors exhibited such that we can accurately predict for the next 

score. In independent forecasting, previous wake scores are used to 

predict the next wake score and previous sleep scores used to 

predict the next sleep score. For the cross forecasting problem, we 

are interested in whether we can get enough information from sleep 

patterns to predict how the participant is going to perform during 

the next wake period, and vice versa. In the cross forecasting, the 

previous sleep scores are used to predict the next wake score, and 

the previous wake scores are used to predict the next sleep score. 

For the joint forecasting problem, we are interested in determining 

whether adding all the behavioral score information to the model 

will increase the accuracies when predicting for the next score. In 

joint forecasting, both the previous wake scores and the previous 

sleep scores are used together to predict the next wake score and/or 

the next sleep score. 

 

6. CASAS SMART HOME DATA 
For all the experiments presented in this research, we used data 

that was collected in actual smart home systems deployed in 

communities. The data was collected by the CASAS smart home 

system, developed at Washington State University, which was then 

installed in the participant’s home. We analyze data collected from 

10 CASAS smart home test beds, each with one resident. A sample 

floor plan is illustrated in Figure 6.  

Each of the smart homes used in this research have least one 

bedroom, a kitchen, a dining area, a living area, and at least one 

bathroom. All of the CASAS smart homes have different sizes and 

layouts, yet they all include the standard sensor setup. There are 

four sensor types that contribute to the CASAS smart home system: 

(1) narrow-field motion sensors, these sensors reports an ON label 

when motion is detected, followed by an OFF label when the 

movement stops. (2) Wide-field motion sensors, these are an overall 

area sensor determine whether there has been movement in the 

room, not where the participant is. (3) Door sensors, these sensors 

use a magnetic switch to determine whether the doors are opened 

or closed. (4) Temperature sensors, these sensors create an event 

when the temperature changes.  

As the participants are going through their daily routines, when 

any of the sensors are triggered a sensor event is created and that 

event is then recorded into the database. The recorded sensor events 

is then run through an activity recognition method (either through 

an automated activity recognition software or through human 

annotation) to label the sequence of sensor events.  

6.1 Activity Labeling 
Sensor events are mapped to activity labels using activity 

recognition. The activity recognition algorithm learns a general 

mapping based on training data labeled with ground truth activity 

labels. These ground truth activity labels are provided for one 

month of data in each home using human annotation. Human 

annotators reference the participant’s floor plan with a sensor 

layout and interview the participants to determine their daily 

routines. To ensure consistency, multiple people are used to 

annotate activities for the CASAS smart home sites; the inter-

annotator agreement is =0.80 for the data used in this research.  

The activity recognition utilized by the CASAS smart home 

system is AR [14], [15]. AR recognizes activities of daily living 

including cooking, working, and sleeping, from the sensor data 

collected from the smart homes. There were 40 activity labels 

distinguished by AR that were used in this research. 

Figure 6: An example CASAS smart home floor plan 

and sensor layout. The example layout has a bedroom, 

a kitchen, a dining area, a living area, and two 

bathrooms. 



 

7. METHODS 

7.1 Machine Learning Algorithms 
In our BF algorithm, the goal is to predict the next wake score or 

sleep score. Because the scores are continuous values, this can be 

viewed as a regression problem. We focused on five machine 

learning methods, (1) regression tree, (2) random forest regression 

ensemble  (2) linear regression, (4) logistic regression, and (5) 

support vector machine (SVM) with the radial basis function (RBF) 

kernel. 

7.2 Performance Measures 
We used two evaluation measures: mean absolute error and the 

root mean squared error. For all equations used, 𝑦𝑖 are the ground 

truth values that we are comparing all the predictions against, 𝑦�̂� are 

the predicted values, and 𝑁 is the number of instances being 

evaluated; each instance for evaluation contains the pair of 

predicted value and ground truth value, {𝑦𝑖 , 𝑦�̂� }. 

The first evaluation measure that we utilize is the mean absolute 

error (MAE). MAE computes the average of the absolute value 

difference between the predicted value and the observed value. 

MAE is defined as: 

𝑀𝐴𝐸 =  
∑|𝑦𝑖 − 𝑦�̂�|

𝑁
 

MAE measures the average scale of errors without considering 

the direction of the error (negative or positive error). As only the 

difference is taken between the predicted value and the ground truth 

value, all the examples maintain an equal weight; therefore, MAE 

simply measures the accuracy of the prediction. We also explored 

a normalized MAE (NMAE), using the maximum score value 

found in that particular house, defined as:  

𝑁𝑀𝐴𝐸 =  
𝑀𝐴𝐸

max (𝑦𝑖)
 

Another common evaluation measure that we utilize is the root 

mean squared error (RMSE). RMSE is defined as: 

 

𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁
 

Since the difference between the predicted value and the ground 

truth value is being squared, RMSE also is indifferent to the 

direction of the error (whether the error is negative or positive), and 

measures the average magnitude of the error providing an emphasis 

on the higher errors. In other words, RMSE will uncover and 

highlight when to find if any large errors occurred. We explored a 

normalized RMSE (NRMSE), using the maximum score value 

found in that particular house, defined as:  

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max (𝑦𝑖)
 

For both MAE and RMSE (as well as NMAE and NRMSE), the 

best possible score is zero, meaning there was no error. 

Additionally, there is no upper bound on these errors. Using the 

normalized scores, NMAE and NRMSE, shows the percentage of 

the error; therefore, the smaller the percentage the better our 

methods performed. 

7.3 Sliding Window Validation  
As we are forecasting for wake scores and sleep scores, using a 

standard cross validation methods is not feasible. This is due to the 

fact that the wake and sleep scores have a degree of dependence on 

how the occupants behaved the previous cycles. With that in mind, 

we use a sliding window validation method. In this approach, we 

choose a fixed training set size and test on a single data point. The 

training set starts at the beginning of the dataset and is tested on the 

next data point after the training set. The window is then shifted 

forward one data point in order to preform predictions for the next 

point. This is continued until the sliding window has moved 

through the whole dataset. In this method, the only data points that 

are not used for testing are the data points in the initial training set.  

 

Table 1: Shows the top forecasting methods used with each house to forecast the wake scores. Each house shows the NMAE score 

for the RUCD method and PEIRCD. If the NMAE error was less than 2% we highlighted with blue, and if the NMAE error was 

between 2-4% we highlighted with green. 

 

Forecasting for Wake Scores 

 Wake Predictions   Sleep Predictions  

 
Independent  

Prediction 

Cross  

Prediction 

Joint  

Prediction 
  

Independent  

Prediction 

Cross  

Prediction 

Joint  

Prediction 
 

 RUCD PEIRCD RUCD PEIRCD RUCD PEIRCD   RUCD PEIRCD RUCD PEIRCD RUCD PEIRCD  

Home1 0.049 0.030 0.049 0.030 0.049 0.030   0.049 0.054 0.059 0.054 0.059 0.054 Home1 

Home2 0.018 0.021 0.018 0.021 0.018 0.021   0.018 0.078 0.106 0.078 0.106 0.078 Home2 

Home3 0.017 0.041 0.017 0.041 0.017 0.041   0.017 0.082 0.041 0.082 0.044 0.080 Home3 

Home4 0.024 0.017 0.024 0.017 0.024 0.017   0.024 0.108 0.097 0.108 0.097 0.108 Home4 

Home5 0.028 0.083 0.023 0.065 0.029 0.083   0.029 0.041 0.104 0.000 0.100 0.000 Home5 

Home6 0.025 0.073 0.025 0.073 0.025 0.073   0.025 0.125 0.116 0.125 0.117 0.125 Home6 

Home7 0.045 0.069 0.045 0.069 0.045 0.069   0.045 0.108 0.125 0.108 0.121 0.108 Home7 

Home8 0.03 0.024 0.03 0.024 0.03 0.024   0.03 0.066 0.091 0.066 0.091 0.066 Home8 

Home9 0.023 0.083 0.023 0.085 0.023 0.084   0.023 0.032 0.069 0.036 0.069 0.055 Home9 

Home10 0.008 0.026 0.024 0.026 0.019 0.026   0.019 0.127 0.000 0.130 0.000 0.130 Home10 

                

 



8. FORECASTING 

8.1 Day Elimination Criteria 
Before running the forecasting methods, we need to consider any 

elimination criteria for the cycles. Because we define a cycle 

framework there is the potential that the cycles are shorter than or 

longer than the standard 24 hours since we are using the 

participant’s sleeping patterns to indicate a change of cycle. 

However, the participant will still have roughly a 24-hour time 

frame for wake/sleep cycles because of their circadian rhythms, 

also shown by the periodogram. Therefore, we remove cycles that 

have fewer than 20 hours or more than 26 hours. 

8.2 Results 
Table 1 shows the results for forecasting wake scores (left side) 

and sleep scores (right side) for 10 smart homes. The results in 

Table 1 show the best NMAE for the both the RUCD method and 

the PEIRCD method.  

In all the methods used for forecasting both wake scores and 

sleep scores, the maximum NMAE error was 13%, representing 

87% accuracy. A noticeable result found was the differences in 

accuracies when forecasting for wake and sleep scores; forecasting 

for wake scores provided higher accuracies. When forecasting for 

wake scores, none of the houses yielded more than 10% error. 

When forecasting for sleep scores, with the independent method 

there were no houses with a greater than 10% error; however, when 

using both the cross method and the joint method there were 5 

houses with error greater than 10%. Therefore, when forecasting 

for both wake and sleep scores, the majority of the results produce 

less than 10% error, or a greater than 90% accuracy. With the wake 

and sleep scores, we found that predominantly SVM was out 

performing the other methods.  

We observe that when forecasting for sleep scores, the 

independent forecasting method yields better accuracies in general 

over the other forecasting methods. This is not the case when 

forecasting for wake scores, as each method is preforming within a 

few percentage of the forecasting methods. 

The results for the cross forecasting methods showed that the 

accuracies were only a few percent different then the accuracies for 

the independent forecasting method. This is a promising result, 

since it shows that wake behavior can be modeled from previous 

sleep behavior and that sleep behavior can be modeled from 

previous wake behavior, with an acceptable accuracy.  

In the case of joint forecasting, the accuracies were only a few 

percent different then the accuracies for the independent 

forecasting method; additionally, the results for the joint 

forecasting methods were very close (if not the same) to the results 

for the cross forecasting methods. This shows that adding all the 

behavior score information from the cycle does not improve the 

accuracies or have much of an effect compared to using just one 

cycle period. 

 

9. RELATED WORK 
As smart home environments are outfitted with various sensors, 

there is a greater potential of assistive care for participants with 

either a cognitive or a physical impairment [16], [17]. Assistive 

healthcare technology that has been researched includes prompting, 

where the smart home reminds the participant when an action or 

activity should take place [18], [19].  

There is also a wide range of healthcare monitoring available in 

a smart home. Cognitive health monitoring in a smart home can 

also be analyzed based on the frequency and quality of activities 

completed throughout the day [20]–[22]. A related area to both 

physical and cognitive monitoring is behavioral monitoring. There 

has been some research regarding behavior predictions [23], in 

which the behavior is determined by the usage of the household 

appliances. In this case, forecasting has been utilized for predicting 

appliance usage durations to ultimately predict the behavior of the 

participants. Detecting behavior anomalies [24] in a smart home 

environment has also been explored; when detecting anomalies, a 

sequence of the events occurring in each particular room is 

analyzed based on the start time and duration of typical sequences. 

Clusters of behavior patterns are created for each room and provide 

the basis for identifying and predicting anomalies in the home. In 

both of these cases, research has focused on the older adult 

population, often with some form of cognitive impairment.  

 

10. CONCLUSIONS 
We have explained the importance of sleep in a person’s overall 

health and wellbeing; thus illustrating the need to have the sleep 

component be more important than it has typically been given in 

other research with smart home environment. Through the 

experiments that were performed, we found that adding 

information gained from a periodogram to rule based cycle 

detection can drastically improve effectiveness of cycle detection. 

Additionally, we found that regardless of the forecasting method 

utilized, we can effectively model wake behavior and sleep 

behavior within a smart home environment.  

As the results for the cross forecasting methods and the joint 

forecasting methods were only a few percent different than the 

results for the independent forecasting methods, we found that 

adding all the behavior score information into the forecasting 

models did not provide enough information to make a noticeable 

difference in accuracy. However, the results from cross forecasting 

methods are promising since it shows that wake behavior can be 

modeled from previous sleep behavior and that sleep behavior can 

be modeled from previous wake behavior, with an acceptable 

accuracy. This provides the opportunity to explore the relationship 

between wake behavior and sleep behavior, which will be explored 

as the research continues.  
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