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Sensors are Everywhere

§ Sequences of time stamped 
observations
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Sensors are everywhere

I In many applications, we generate large sequences of timestamped
observations

– “Sensors” have a broad definition
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Sensor Data: Time Series

§ Sensors generate lots of time-series 
data
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Network inference from time series data

I Convert a sequence of timestamped sensor observations into a
time-varying network
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§ This data is
§ High-dimensional
§ Unlabeled
§ High-velocity
§ Dynamic
§ Heterogeneous
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Challenges
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…But it Can be Very Valuable!

§ Caterpillar shipping

§ Discovered correlation between fuel 
usage and refrigerated containers

§ Realized that in certain regimes they 
needed to re-optimize 
their engine configuration
parameters 

§ Saved $650,000+/year
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Success Stories

§ Pella Corporation
§ Large window and door manufacturing

§ Owns 10 manufacturing plants
§ Large % of costs comes from energy bill

§ Deployed sensor network
across their plants
§ To monitor usage and provide

real-time feedback to operators

§ 16% decrease in energy costs!
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Discovering Structure in the Data

§ Without proper methods, it is not 
possible to capitalize on the 
promise of “big data”

§ Unsupervised learning 
methods are needed to
allow humans to interpret 
and act on these 
large datasets
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How do we describe the 
structure of the time series 
so we can obtain insights 
and make predictions?



Key Questions

How to break down time series 
datasets into simple, interpretable 
components?
§ …without pre-defining the structure, 

which leaves us open to biases!

How can we identify breakpoints, 
outliers, and labels for this time series 
data in a scalable way?
§ Streaming settings increasingly common
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Today’s Talk
§ Toeplitz inverse covariance-based 

clustering (TICC)

§ Drive2Vec

§ Overview of future research directions 
in time series analysis
§ Deep learning
§ Open-source tools
§ Applications
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Toeplitz Inverse Covariance-
based Clustering (TICC)
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Interpreting a Time Series
Value in “breaking down” the data into a sequence 
of states
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Simultaneous Segmentation and Clustering
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§ In general, these “states” are not predefined
§ We do not know what they are, nor what they 

refer to…

§ Instead, we need to discover these states 
in an unsupervised way!
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What is a Time Series?
§ T sequential observations

§ x1, x2, …, xT

§ Each observation xi is n-dimensional
§ i.e., coming from n different sensors

§ Observations can be synchronous or 
asynchronous

§ There may be missing data
§ For example, if certain sensors are sampled 

at a higher rate than others
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Goal

§ Given: Multivariate time series

§ Goal: Assign each point into one of 
K different states (or clusters), each 
defined by a simple “pattern”
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Definition of a Cluster

Convert a sequence of timestamped 
observations into a time-varying network
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Definition of a Cluster

§ Each cluster is defined by a multilayer correlation 
network, or a Markov Random Field (MRF)
§ Contains both intra-layer and inter-layer edges

§ MRFs encode structural relationships between 
the sensors
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Example

19Jure Leskovec, Stanford University



Automobile – “Turning” State
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Automobile – “Stopping” State
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TICC Problem Setup

§ Formal definition:

where,
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Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. D. Hallac, S. Vare, S. Boyd, J. 
Leskovec. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2017
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Block Toeplitz Matrices

§ Sparsity in the Toeplitz matrix defines the 
MRF edge structure 

§ Toeplitz constraint enforces time invariance



Running Example



Approach: EM
§ TICC is highly non-convex

§ But we can use an EM-like approach to 
solve it!

§ Alternate between…
§ Assigning points to clusters in a 

temporally consistent way

§ Updating the cluster parameters 

2
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Assigning Points to Clusters

We can solve this with dynamic programming!
2
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Updating Cluster Parameters

§ Toeplitz Graphical Lasso:

§ We derive an ADMM solution (with 
closed-form proximal operators) to 
solve this problem efficiently



TICC: Scalability

§ Can scale to problems with tens of 
millions of observations!
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Scalability

I ADMM can solve for millions of variables in minutes!

– Centralized solver (CVXPY) explodes computationally

Number of Unknowns TVGL Interior-Point
100 0.9 37.9
360 0.9 5362.7
200,000 48.3 -
5 million 706.4 -

Results 18

CVXPY
SnapVX

SnapVX: A Network-Based Convex Optimization Solver. D. Hallac, C. Wong, S. Diamond, A. Sharang, R. Sosič, S. 
Boyd, J. Leskovec. Journal of Machine Learning Research (JMLR), 18(4):1−5, 2017.

https://cs.stanford.edu/people/jure/pubs/snapvx-jmlr17.pdf


How to Use TICC

§ Black box solver that returns
§ Segmentation of the time series
§ Structural network defining each state

§ Key parameter: Number of states
§ Statistical methods of choosing the 

optimal parameter value

§ How to understand the results?
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Case Study: Automobiles
§ We analyzed 1 hour of driving data 

§ 36,000 samples @ 10Hz

§ We observed seven sensors
§ Brake pedal position
§ Forward (X-)acceleration
§ Lateral (Y-)acceleration
§ Steering wheel angle
§ Vehicle velocity
§ Engine RPM
§ Gas Pedal Position
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Interpreting the Clusters

§ We run TICC with K = 5 clusters and 
plot the betweenness centrality 
score of each node in each cluster
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Interpreting the Clusters

§ We run TICC with K = 5 clusters and 
plot the betweenness centrality 
score of each node in each cluster
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Plotting the Resulting Clusters

§ Green = straight, white = slowing down,     
red = turning, blue = speeding up

§ Results are very consistent across the data!
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Implications

§ Auto-labeling of data in an 
unsupervised way
§ Big cost for autonomous vehicles

§ Search engine for discovering motifs in 
the time series

§ Discover unique characteristics of 
individual drivers

§ Can be used to identify more granular 
behaviors
§ Lane changes, near-accidents, etc.
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Predicting the Future
(but without feature engineering)
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Key Question

Can you aggregate all of 
car’s sensors and embed 

them into a single, 
low-dimensional state?
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[Hallac et al., 2018]
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Our Approach

This state should be predictive of both 
the short and long-term future
§ First order effects – what the car is 

about to do
§ Second order effects – the environment 

that the car is currently in (location, 
driver style, etc…)
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Key Insight

Key insight: Attempt to predict the 
future at multiple granularities 
simultaneously:

§ Combine multiple RNNs so they can 
learn at different levels of abstraction

§ Learn to encode future at various 
time-scales
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Drive2Vec Architecture

§ Recurrent Neural network based on 
stacked Gated Recurrent Units (GRUs)
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Problem Setup

§ Dataset: Automobile data containing 
1,400 sensors recording at 10 Hz.

§ Goal: Predict driver actions 1 sec 
before they occur
§ Left/Right blinker
§ Accelerate (gas pedal > threshold)
§ Hard braking (brake pedal < threshold)
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Driver Identification Using Automobile Sensor Data from a Single Turn. D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. 
Huber, M. Roehder, R. Sosic, J. Leskovec IEEE International Conference on Intelligent Transportation Systems (ITSC), 2016.Jure Leskovec, Stanford University

https://cs.stanford.edu/people/jure/pubs/driver-itsc16.pdf


Drive2Vec Goal

§ Given: a 1 second window (10 
samples) of 665-dimensional data

§ Goal: Embed this data into a single 
64-dimensional state that can be 
used to predict the short and long-
term future of the car
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Drive2Vec Experiments

§ This single 64-dimensional 
embedding can:
§ A) Predict exact sensor values in short-

term 

§ B) Predict long-term average sensor 
values

§ C) Correctly identify driver (out of 29 
potential drivers)

§ D) Be used as a knowledge base to 
identify potentially risky scenarios
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Experimental Setup

§ Train embeddings on 80% of the 
data to get mapping from raw data 
to the embedding

§ Evaluate performance on a separate 
hold-out test set
§ All numbers are reported using the 

same 64-dimensional embedding
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Experiment #1

§ Short prediction: 64-dimensional 
embedding à exact 665 sensor values 
1 second in the future

§ Long prediction: 64-dimensional 
embedding à average 665 sensor 
values over the next 100 seconds 
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Experiment #2

§ MSE vs. “time in future” of short-term prediction
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Experiment #3

§ MSE vs. Embedding size
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Experiment #4

§ F1-score of 29-way driver 
identification task
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Case Study #1

§ Different scenarios have extremely 
similar Drive2Vec embeddings!
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Case Studies #2

§ We can identify risky scenario’s 
before they occur

§ Predict 0.1s before a “brake slam”

§ Similarity search returns AUC of 
0.999983 compared to set of 8.5 
million non-hard-brake scenarios
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Case Study #3

§ Temporal evolutions of embeddings
§ Large shocks occur from highway to rural 

(both short + long expected values change)
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Predicting Driver Actions
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Predicting Driver Actions
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Predicting Driver Actions

5
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The Future of Time 
Series Research

57



Deep Learning

§ Long short-term memory (LSTMs)
§ Type of recurrent neural network (RNN)

§ Becoming a increasingly powerful method 
of forecasting/classification on time series
§ However, results are less interpretable
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Stanford Project: MacroBase

§ Analytics engine that prioritizes user attention
by combining outlier detection and high-
dimensional feature selection routines at scale
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Applications

§ Event/anomaly detection

§ Important to have principled 
math/statistics background
§ Not everything is this clean…
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Applications

§ Predictive maintenance
§ What if you can predict failures before they 

occur?
§ Potentially huge cost/safety benefits
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Applications

§ User modeling (personalization)
§ Bridging the gap between online and 

offline

62Jure Leskovec, Stanford University



Analyzing Sensor Data
§ Lots of exciting research directions
§ More and more applications by the day

§ Bringing innovations from the online world to 
the real world

§ However, new and improved methods are 
required to keep innovating
§ Interpreting and acting on sensor data in an 

unsupervised way

§ We’re only at the 
tip of the iceberg!
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Conclusion

§ Complex engineered 
systems
§ High-dimensional unlabeled 

time series data collected 
in real-time

§ We need tools to 
understand these data as 
well as to make accurate 
predictions
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Sensors are everywhere

I In many applications, we generate large sequences of timestamped
observations

– “Sensors” have a broad definition

Introduction 2
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