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Sensors are

—verywhere

= Sequences of time stamped

observations

Indoor/outdoor Passenger Occupancy Friallbual
-

temperature sensors .
Seat belt tension

0Oil sensor

Aerospace
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Sensor

Data: Time Series

= Sensors generate lots of time-series

data




Challenges

= This datais
= High-dimensional mce:%g“’;{g%g?
= Unlabeled G
= High-velocity E
= Dynamic
= Heterogeneous  |:
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But it Can be Very Valuable!

= Caterpillar shipping

= Discovered correlation between fuel
usage and refrigerated containers

= Realized that in certain regimes they
needed to re-optimize

their engine configuration °
parameters
= Saved $650,000+/year
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Success Stories

= Pella Corporation
= [arge window and door manufacturing

= Owns 10 manufacturing plants
= [arge % of costs comes from energy Dill

= Deployed sensor network
across their plants

= To monitor usage and provide
real-time feedback to operators

= 16% decrease in energy costs!
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Discovering Structure in the Data

= Without proper methods, it is not
possible to capitalize on the
promise of “big data”

* Unsupervised learning
methods are needed to
allow humans to interpret
and act on these
large datasets

Jure Leskovec, Stanford University



How do we describe the
structure of the time series

SO we can obtain insights
and make predictions?




Key Questions

How to break down time series
datasets into simple, interpretable
components?

= ...without pre-defining the structure,
which leaves us open to biases!

How can we identify breakpoints,
outliers, and labels for this time series
data in a scalable way?

= Streaming settings increasingly common



Today’s Talk

Toeplitz inverse covariance-based
clustering (TICC)

Drive2\Vec

Qvervievv Qf future research directions
IN time series analysis

= Deep learning
= Open-source tools
= Applications

Jure Leskovec, Stanford University
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Toeplitz Inverse Covariance-
based Clustering (TICC)



Interpreting a Time Series

Value in “breaking down” the data into a sequence
of states
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Simultaneous Segmentation and Clustering

= |In general, these “states” are not predefined

= We do not know what they are, nor what they
refer to...
9

A

= |nstead, we need to discover these states
iN an unsupervised way!
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What is a Time Series”?

= [ seqguential observations
" Xy, Xoy veny X7

= Each observation x is n-dimensional
= |.e., coming from n different sensors

= Observations can be synchronous or
asynchronous

= There may be missing data

= For example, if certain sensors are sampled
at a higher rate than others

Jure Leskovec, Stanford University 15



Goal

= (Given: Multivariate time series

= Goal: Assign each point into one of
K different states (or clusters), each
defined by a simple “pattern”

NAT4 T R
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Definition of a Cluster

Convert a sequence of timestamped
observations into a time-varying network

7 b > Time
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Definition of a Cluster

Each cluster is defined by a multilayer correlation
network, or a Markov Random Field (MRF)

= (Contains both intra-layer and inter-layer edges

MRFs encode structural relationships between
the sensors

Jure Leskovec, Stanford University 18



Cluster:

A B C

Cluster A Cluster B

Jure Leskovec, Stanford University
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Automobile — “Turning” State

Jure Leskovec, Stanford University 20



Automobile — “Stopping” State

Jure Leskovec, Stanford University 21



TICC Problem Setup

= Formal definition:

% sparsity log likelihood  temporal consistency

. —— ~
argmin Z Ao ®;ll1 + Z —00(X;,0;)+ PL{X;—1 ¢ P;}
©cT.P =1 X, €P;

where,
1
CO(Xt,0:) = =2 (Xe = i) ©:(Xz = pui)
1 n
t5 logdet®; — Py log(2r)

Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. D. Hallac, S. Vare, S. Boyd, J.
Leskovec. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2017
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https://cs.stanford.edu/people/jure/pubs/ticc-kdd17.pdf

Slock Toeplitz Matrices

= Sparsity in the Toeplitz matrix defines the
MRF edge structure

- A0) (A(l))T (A(2))T i

0,=| AW A0) (A(l))T
A2) A) A(0)

= TJoeplitz constraint enforces time invariance



Running Example

Cluster: A . B . C . B

Cluster A Cluster B



Approach: EM

= TICC is highly non-convex

= But we can use an EM-like approach to
solve it!

= Alternate between...

= Assigning points to clusters in a
temporally consistent way

= Updating the cluster parameters



Assigning Points to Clusters
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We can solve this with dynamic programming!



Updating Cluster Parameters

= Toeplitz Graphical Lasso:

1

minimize — logdet®; + tr(S;0;) + il 1A o Ojl1
I

subject to ;€T

= \We derive an ADMM solution (with
closed-form proximal operators) to
solve this problem efficiently



TICC: Scalabillity

Performance Comparison over Different Problem Sizes
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= Can scale to problems with tens of
millions of observations!

SnapVX: A Network-Based Convex Optimization Solver. D. Hallac, C. Wong, S. Diamond, A. Sharang, R. Sosi¢, S.
Boyd, J. Leskovec. Journal of Machine Learning Research (JMLR), 18(4):1-5, 2017.
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https://cs.stanford.edu/people/jure/pubs/snapvx-jmlr17.pdf

How to Use TICC

» Black box solver that returns
= Segmentation of the time series
= Structural network defining each state

= Key parameter: Number of states

= Statistical methods of choosing the
optimal parameter value

= How to understand the results?
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Case Study: Automobiles

= We analyzed 1 hour of driving data
= 36,000 samples @ 10Hz

= \We observed seven sensors
= Brake pedal position
= Forward (X-)acceleration
= |ateral (Y-)acceleration
= Steering wheel angle
= Vehicle velocity
= Engine RPM
= (Gas Pedal Position

Jure Leskovec, Stanford University
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Interpreting the Clusters

= \We run TICC with K = 5 clusters and
plot the betweenness centrality
score of each node in each cluster

Interpretation Brake | X-Acc | Y-Acc | SW Angle | Vel | RPM | Gas
#1 | Slowing Down 25.64 0 0 0 27.16 0 0
#2 0 4.24 66.01 17.56 0 5.13 | 135.1
#3 0 0 0 0 16.00 0 4.50
#4 0 0 0 0 32.2 0 26.8
#5 4.52 0 4.81 0 0 0 94.8
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Interpreting the Clusters

= \We run TICC with K = 5 clusters and
plot the betweenness centrality
score of each node in each cluster

Interpretation Brake | X-Acc | Y-Acc | SW Angle | Vel | RPM | Gas
#1 | Slowing Down 25.64 0 0 0 27.16 0 0
#2 Turning 0 4.24 66.01 17.56 0 5.13 | 135.1
#3 0 0 0 0 16.00 0 4.50
#4 0 0 0 0 32.2 0 26.8
#5 4.52 0 4.81 0 0 0 94.8
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Interpreting the Clusters

= \We run TICC with K = 5 clusters and
plot the betweenness centrality
score of each node in each cluster

Interpretation Brake | X-Acc | Y-Acc | SW Angle | Vel | RPM | Gas
#1 | Slowing Down 25.64 0 0 0 27.16 0 0
#2 Turning 0 4.24 66.01 17.56 0 5.13 | 135.1
#3 Speeding Up 0 0 0 0 16.00 0 4.50
#4 ' 0 0 0 0 32.2 0 26.8
#5 4.52 0 4.81 0 0 0 94.8
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Interpreting the Clusters

= \We run TICC with K = 5 clusters and
plot the betweenness centrality
score of each node in each cluster

Interpretation Brake | X-Acc | Y-Acc | SW Angle | Vel | RPM | Gas
#1 | Slowing Down 25.64 0 0 0 27.16 0 0
#2 Turning 0 4.24 66.01 17.56 0 5.13 | 135.1
#3 Speeding Up 0 0 0 0 16.00 0 4.50
#4 | Driving Straight 0 0 0 0 322 | 0 | 268
#5 4.52 0 4.81 0 0 0 94.8
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Interpreting the Clusters

= \We run TICC with K = 5 clusters and
plot the betweenness centrality
score of each node in each cluster

Interpretation Brake | X-Acc | Y-Acc | SW Angle | Vel | RPM | Gas
#1 | Slowing Down 25.64 0 0 0 27.16 0 0
#2 Turning 0 4.24 66.01 17.56 0 5.13 | 135.1
#3 Speeding Up 0 0 0 0 16.00 0 4.50
#4 | Driving Straight 0 0 0 0 322 | 0 | 268
#5 Curvy Road 4.52 0 4.81 0 0 0 94.8
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Plotting the

Resulting Clusters

= Green = straight, white = slowing down,
red = turning, blue = speeding up

= Results are very consistent across the datal

36



Implications

= Auto-labeling of data in an
unsupervised way

= Big cost for autonomous vehicles

= Search engine for discovering motifs in
the time series

= Discover unique characteristics of
individual drivers

= (Can be used to identify more granular
behaviors

= [ane changes, near-accidents, etc.

Jure Leskovec, Stanford University
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Predicting the Future

(out without feature engineering)




[Hallac et al., 2018]

Key Question

Can you aggregate all of
car’s sensors and embed
them into a single,
low-dimensional state”

Jure Leskovec, Stanford University



Our Approach

This state should lbe predictive of both
the short and long-term future

= First order effects — what the car is
about to do

= Second order effects — the environment
that the car is currently in (location,
driver style, etc...)
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Key Insight

Key insight: Attempt to predict the
future at multiple granularities
simultaneously:

= Combine multiple RNNs so they can
learn at different levels of abstraction

= | earn to encode future at various
time-scales
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Drive2Vec Architecture

10 sequential
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Problem Setup

= Dataset: Automobile data containing
1,400 sensors recording at 10 Rz.

= Goal: Predict driver actions 1 sec
before they occur
= |eft/Right blinker
= Accelerate (gas pedal > threshold)
* Hard braking (brake pedal < threshold)

Driver Identification Using Automobile Sensor Data from a Single Turn. D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M.
Huber, M. Roehder, R. Sosic, J. Leskovec IEEE Interngtional Conference on Intelligent Transportation Systems (ITSC), 2016. 4



https://cs.stanford.edu/people/jure/pubs/driver-itsc16.pdf

Drive2Vec Goal

= Given: a 1 second window (10
samples) of 665-dimensional data

= (Goal: Embed this data into a single
o4-dimensional state that can be
used to predict the short and long-
term future of the car
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Drive2Vec Experiments

= This single 64-dimensional
embedding can:

= A) Predict exact sensor values in short-
term

= B) Predict long-term average sensor
values

= ) Correctly identify driver (out of 29
potential drivers)

= D) Be used as a knowledge base to
Identify potentially risky scenarios

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



—Xperimental Setup

= Train embeddings on 80% of the
data to get mapping from raw data
to the embedding

= Evaluate performance on a separate
hold-out test set

= All numbers are reported using the
same 64-dimensional embedding
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=Xperiment #1

= Short prediction: 64-dimensional

embedding = exact 665 sensor values
1 second in the future

= |ong prediction: 64-dimensional
embedding = average 665 sensor
values over the next 100 seconds

Short prediction MSE | Long prediction MSE
Drive2Vec 0.020 0.021
Short-only D2V 0.021 0.027
Long-only D2V 0.052 0.021
PCA 64 0.174 0.036
Last timestep 0.204 0.069

Jure Leskovec, Stanford University




=Xperiment #2

= MSE vs. “time in future” of short-term prediction
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=Xperiment #3

= MSE vs. Embedding size

0.04 ~

0.03 A

MSE of 1-Second Future Prediction

0.02 1 | | —0— —Q

0 50 100 150 200 250
Drive2Vec Embedding Size (Number of Floats)
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=Xperiment #4

= F1-score of 29-way driver

identification task

Method Micro F7-score
Drive2 Vec 0.642
Short-only D2V 0.593
Long-only D2V 0.741
PCA 64 0.577
Random 0.046

eeeeeeeeeeeeeeeee
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Case Study #1

= Different scenarios have extremely
similar Drive2Vec embeddings!
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Case Studies #2

= We can identify risky scenario’s
before they occur

= Predict 0.1s before a “brake slam”

= Similarity search returns AUC of
0.999983 compared to set of 8.5
million non-hard-brake scenarios
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Case Study #3

= Temporal evolutions of embeddings

= |Large shocks occur from highway to rural
(ooth short + long expected values change)

Jure Leskovec, Stanford University 53



Predicting Driver Actions
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Predicting Driver Actions
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Predicting Driver Actions
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Deep Learning

= |Long short-term memory (LSTMS)
= Type of recurrent neural network (RNN)

= Becoming a increasingly powerful method
of forecasting/classification on time series
= However, results are less interpretable




Stanford Project: MacroBase

= Analytics engine that prioritizes user attention
by combining outlier detection and high-
dimensional feature selection routines at scale

_i_ il 1 extract
‘; Eiﬁ/@ IV\N\/\/ domain-specific

'''''''' - signals
TRANSFORM :
: identify data
\4 in tails
CLASSIFY
4 find disproportionately
correlated attributes
EXPLAIN Outliers Inliers
{iPhone6, Canada} {iPhone6, USA}
¥ {iPhone6, USA} {iPhone6, USA}

{iPhone5, Canada} {iPhone5, USA}

Jure Leskovec, Stanford University 59



Applications

= Event/anomaly detection oot

Tuesday Tuesday Tuesday
@ 3:00 @ 3:30 @ 5:30

= |mportant to have principled
math/statistics background

= Not every_thing s this clean...

Jure Leskovec, StanfordkUniversity 60



Applications

= Predictive maintenance

= \What if you can predict failures before they
occur?

= Potentially huge cost/safety benefits

"Henry, it's for you -
apparently your heart is
about to fail..."

61



Applications

= User modeling (personalization)

= Bridging the gap between online and
offline




Analyzing Sensor Data

= | ots of exciting research directions

= More and more applications by the day

= Bringing innovations from the online world to
the real world

= However, new and improved methods are
required to keep innovating

= |nterpreting and acting on sensor data in an
unsupervised way

= We're only at the
tip of the iceberg!
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Conclusion

CUT-AWAY VIEW

= Complex engineered e =
systems .

time series data collected
INn real-time
= \We need tools to
understand these data as
well as to make accurate
predictions

Jure Leskovec, Stanford University
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