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Modern sources of time series



Until recently, ML (mostly) ignored time series

It’s hard!

# parameters (naively) grows rapidly with
� # of series
� complexity of dynamics captured

Algorithms more computationally intensive

Theory not applicable because typically 
assume no time dependencies

More 
data

More compute



Now time series are “in” 

Massive 
time series 
/ seq. data

Large 
compute

Deep 
learning 

advances 
Success

RNNs

LSTMs

GRUs

wavenet

seq2seq

...

Reinforcement 
learning

Speech 
generation 

Machine 
translation

Speech 
recognition

NLP
Medical 
records / 

healthcare



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

Clear 
prediction 
objective

Inferring brain networks:
Costly data collection, significant 
subject-to-subject variability



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

Clear 
prediction 
objective

Demand forecasting of new item:
Tons of data, but not for question 
of interest



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

Clear 
prediction 
objective

Rare disease (or event) modeling:
Need to focus on tails of distribution



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

Clear 
prediction 
objective

Changing context (non-stationarity):
Patient recovering or deteriorating, 
event-driven changes, etc.



But, success also relies on…

• Lots of correspondence data

• Lots of trials of a robot navigating every part of 
the maze

• Lots of transcribed audio

Lots of 
replicated 

series

• Seen this structure in a maze before

• Seen these words in this context before

• Seen patient with these symptoms and test 
results before

Manageable 
contextual 
memory

• Word error rate for speech recognition

• BLEU score for machine translation

• Reward function in reinforcement learning

Clear 
prediction 
objective

Structure learning, 
interpretability

Few, low-trustworthy labels 

No clear prediction metric



Interpretable 
interactions

Modeling 
sparsely sampled, 

nonstationary 
time series

Handling bias in 
stochastic 

gradients of 
sequential data



Granger causality:
Directed, lagged interactions in time series

series i

series j

time



Gene regulatory networks

Why are interactions important?
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Functional networks in the brain



Granger causality selection – Linear model

+= +

xt xt-1 xt-2 etA1 A2

Series i does not Granger cause series j iff Aji,k = 0  ∀k  

Lag k interaction
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Granger causality selection – Linear model
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reconstruction error group lasso penalty



Gene regulatory networks

The issue with a linear approach
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switch

Functional networks in the brain

What if interactions are 
nonlinear?



Modeling nonlinear dynamics
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Nonlinear maps of 
past values

Tank, Covert, Foti, Shojaie, Fox, NIPS Time Series Workshop 2017, under review 2019



Identifying Granger causality

= +
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et

, , …
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, , …
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Series i not Granger 
causal of j if…

invariant

Tank, Covert, Foti, Shojaie, Fox, NIPS Time Series Workshop 2017, under review 2019



Using penalized neural networks

= +
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et

, , …
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g1

g2
Penalize weights

Model 
using 
NNs

Tank, Covert, Foti, Shojaie, Fox, NIPS Time Series Workshop 2017, under review 2019
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Penalized multilayer perceptron (MLP)



Penalized multilayer perceptron (MLP)

(x(t�1)2 . . . x(t�K)2)

group inputs by:
(  K lags of series j )

place group-wise penalty 
on layer 1 weights

series j does not Granger 
cause series i if group j 

weights are 0



Penalized multilayer perceptron (MLP)
reconstruction error

group lasso penalty

weights from series j at all lags

(x(t�1)2 . . . x(t�K)2)

min
W
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t=K

�
xit � gi(x(t�1):(t�K))

�2
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pX

j=1

||(W 11
:j , . . . ,W 1K

:j )||F



Lag selection via hierarchical group lasso

group lasso penalty

min
W

TX

t=K
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xit � gi(x(t�1):(t�K))

�2
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j=1

||(W 11
:j , . . . ,W 1K

:j )||F

�
pX
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KX
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||(W 1k
:j , . . . ,W 1K

:j )||F

hierarchical
group lasso penalty (x(t�1)2 . . . x(t�K)2)



Weights of the LSTM

ft = �
�
W fxt + Ufh(t�1)

�

it = �
�
W inxt + U inh(t�1)

�

ot = �
�
W oxt + Uoh(t�1)i

�

ct = ft � ct�1 + it � �
�
W cxt + U ch(t�1)

�

ht = ot � �(ct)

input gate

output gate

cell state 
evolution

forget gate

hidden state 
evolution

define effect of input on prediction



A penalized LSTM

min
W,U,wO

TX

t=2

(xit � gi(x<t))
2 + �

pX

j=1

||W:j ||2

series j does not Granger cause series i if 
jth column of weights W is 0

reconstruction error group lasso penalty

define effect of input on prediction



DREAM3 challenge

Difficult non-linear dataset used to benchmark 
Granger causality detection

Simulated gene expression and regulation dynamics for:
• 2 E.Coli and 3 Yeast

• 100 series (network size)

• 46 replicates 

• 21 time points

Structure extracted from currently established gene regulatory networks

Very different 
structures



DREAM3 results
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Capturing contemporaneous interactions 
via structured deep generative models

encoder decoder decoder decoder

Penalize weights from latent 
dim to group-specific decoder

Ainsworth, Foti, Lee, Fox, ICML 2018

Tim
e

dorsal attention 
network

default mode 
network



Interpretable 
interactions

Modeling 
sparsely sampled, 

nonstationary 
time series

Handling bias in 
stochastic 

gradients of 
sequential data



modeling a local housing index
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Challenge: Spatiotemporally sparse data6 Y. REN ET AL.
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Fig 2. A demonstration of the e↵ect of clustering: (a) and (b) show the posterior mean
( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L2 distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have
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Fig 2. A demonstration of the e↵ect of clustering: (a) and (b) show the posterior mean
( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L2 distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have
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Solution: Discover clusters 
of latent price dynamics20 Y. REN ET AL.
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

Cluster 4

…



Single census tract model
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Multiple census tract model
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Cluster and correlate multiple time series
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

⌃ Latent factor model 
+

Bayesian nonparametrics

Ren, Fox, Bruce, Annals of Applied Statistics 2017
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Fig 13. Under the MAP sample, cluster-average intrinsic price dynamics computed by
averaging x1:T,i over all i with zi = k for k = 1, . . . , 16. The color scheme is the same as
in Figure 12.

Table 3
For our predictive performance comparison summarized in Table 4, the number of tracts
and individual houses (in test set) that rely on using city, zip code, or tract-level indices

with the Case-Shiller method. Our Bayesian method always uses a tract-level index.

Case-Shiller Case-Shiller Case-Shiller Bayesian
City Zip Code Census Tract Census Tract

# tracts using 11 121 8 140
# observations using 1,294 26,576 3,248 31,118

there is a computable index that can serve as xt,i in our prediction. That is,
we use the finest resolution Case-Shiller index available at any house location
to predict house prices. In Table 3, we summarize the number of house-level
predictions that are based on the Case-Shiller city, zip code, or tract level
indices; we also include the number of tracts for which our analyses relied
on city and zip code levels, or were able to use tract-level indices directly.

Our Bayesian model can successfully produce value indices for all tracts.
To predict house-level prices, we use the posterior predictive distribution

Seattle City analysis 
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until

MODELING A HYPERLOCAL HOUSING PRICE INDEX 25

20
00

00
30

00
00

40
00

00
50

00
00

Global trend without seasonality

(a)

Pr
ic

e

1997−01 2001−01 2005−01 2009−01 2013−01
20

00
00

30
00

00
40

00
00

50
00

00

Global trend with seasonality

(b)

Pr
ic

e

1997−01 2001−01 2005−01 2009−01 2013−01

Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.

tl_2010_53_tract10
clusterID_reassign

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Cluster ID

Fig 12. Map of clusters under the MAP sample. The cluster labels and associated map
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represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until

Cluster-Mean (Log) Latent Price Dynamics
Cluster Map0

2
4
6
8

10
12
14
16
18

Densest 5% Middle 50% Sparsest 5%

Mean APE

90% APE

% improvement over Case Shiller 
in house sales predictions



Robustness to even finer scales

Windermere(

Laurelhurst(

Sand(point(way(

Sand(point(
country(club(

University(
(district(

University(
(village(

Heuristically defined 
neighborhoods

Smaller than census tracts

5% improvement 
in predictive 

performance!



Another data-scarce study:
Dynamics of homelessness

Data challenges:

� Counts occur on single night

� Count method varies from metro 
to metro and across time

� Observe most in shelters and 
only fraction on the streets

� % sheltered varies widely 
between metros

measurement bias!

Goals:

� Studying time-varying homeless 
populations locally

� Infer effect of increases in rent to 
homelessness rate

� Forecast future homeless 
population for decision-making

� Robustly quantify uncertainty



Per-metro count-based dynamical model

(Nonstationary) population dynamics

Noisy census counts (observed)

Log odds of homelessness
regressed on Zillow Rent Index (ZRI)

Total # homeless (unobserved)

Count accuracy

Counted # homeless (observed)

Time

Glynn and Fox, Annals of Applied Statistics 2019



(Nonstationary) population dynamics

Noisy census counts (observed)

Log odds of homelessness
regressed on Zillow Rent Index (ZRI)

Total # homeless (unobserved)

Count accuracy

Counted # homeless (observed)

Time

Benefits over past approaches…

Model count 
data directly

Glynn and Fox, Annals of Applied Statistics 2019



(Nonstationary) population dynamics

Noisy census counts (observed)

Log odds of homelessness
regressed on Zillow Rent Index (ZRI)

Total # homeless (unobserved)

Count accuracy

Counted # homeless (observed)

Time

Benefits over past approaches…

Treat true # 
homeless as 
missing data

Glynn and Fox, Annals of Applied Statistics 2019



(Nonstationary) population dynamics

Noisy census counts (observed)

Log odds of homelessness
regressed on Zillow Rent Index (ZRI)

Total # homeless (unobserved)

Count accuracy

Counted # homeless (observed)

Time

Benefits over past approaches…

Form year-over-year 
comparisons and 
forecasts

Glynn and Fox, Annals of Applied Statistics 2019



(Nonstationary) population dynamics

Noisy census counts (observed)

Log odds of homelessness
regressed on Zillow Rent Index (ZRI)

Total # homeless (unobserved)

Count accuracy

Counted # homeless (observed)

Time

Benefits over past approaches…

Hierarchically pool 
information to overcome 
limited sample size

Glynn and Fox, Annals of Applied Statistics 2019



Adjusting for dynamics of count accuracy and total population, 
is homelessness rate increasing?
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If rent increases x%, do # homeless increase?

Typically weak 
relationship + wide 
uncertainty intervals

Past methods overly 
confident…ignore 
noise in homeless 
count and census data



Interpretable 
interactions

Modeling 
sparsely sampled, 

nonstationary 
time series

Handling bias in 
stochastic 

gradients of 
sequential data



Recap: Mechanisms for coping with limited data

Time

Time

Time

Time

clusters and hierarchies sparse directed interactions

low-dimensional embeddings

Time

switching between simpler dynamics



Interpretable 
interactions

Modeling 
sparsely sampled, 

nonstationary 
time series

Handling bias in 
stochastic 

gradients of 
sequential data





Segmentation

Discrete-time state space models

Examples: HMMs, AR-HMMs, 
linear Gaussian state space models, 
switching linear dynamical systems, 
nonlinear state space models, …

Smoothing/
Filtering

Forecasting



Learning challenge for SSMs

TransitionsEmissions

Fisher's Identity:

Expectation conditioned on full sequence



Algorithms for SSMs

!(t)

Complexity O(K2T)
(or O(N3T) for continuous latent states)

Challenge: 
T = millions



Stochastic gradients + SSMs

!(t)



Issue with naïve approach…

!(t)

Information outside 
minibatch not propagated!

Solution: Account 
for memory decay 
to still act locally



A naïve stochastic gradient for SSMs
Fisher's Identity:

Naive gradient estimator:

Only take expectation 
conditioning on subsequence

Expectation conditioned on full sequence

X

t2S
Eu|yS ,✓ [r✓ log Pr(yt, ut |ut�1, ✓)]

<latexit sha1_base64="yuFwZQM8vpzEM7RGzqY164JE3JE="></latexit><latexit sha1_base64="yuFwZQM8vpzEM7RGzqY164JE3JE="></latexit><latexit sha1_base64="yuFwZQM8vpzEM7RGzqY164JE3JE="></latexit><latexit sha1_base64="yuFwZQM8vpzEM7RGzqY164JE3JE="></latexit>



An unbiased, but impractical alternative
Fisher's Identity:

Unbiased gradient estimator:

Requires message 
passing over full 
sequence O(|T|)



Buffering for approximate unbiasedness

"Buffered" gradient estimator:

Computation
(and memory)

Aicher, Ma, Foti, Fox, to appear in SIAM Journal on Mathematics of Data Science.



kE� [r✓ log Pr(yS , uS |✓)]� E�̃ [r✓ log Pr(yS , uS |✓)]k2 

4LU · 1� LS

1� L
· LB · ✏1

<latexit sha1_base64="DMNTXoYv3pFEoTZ1RMobYwDUmBk="></latexit><latexit sha1_base64="DMNTXoYv3pFEoTZ1RMobYwDUmBk="></latexit><latexit sha1_base64="DMNTXoYv3pFEoTZ1RMobYwDUmBk="></latexit><latexit sha1_base64="DMNTXoYv3pFEoTZ1RMobYwDUmBk="></latexit>

Error analysis

S=3B=2 B=2

Geometrically in B

exact posterior

approx posterior

Aicher, Ma, Foti, Fox, to appear in SIAM Journal on Mathematics of Data Science.



LGSSM example:

Exact posterior

Naive posterior

Buffer posterior

subsequence



Canine iEEG analysis

  

IEEG.org

16 channels, 90 seizures

grab out 4 mins @ 200Hz per channel per seizure à 70 million time points 



AR-HMM + MCMC

Example SGRLD segmentation
(zoomed in around a seizure)

1 hr 1 week

log scale

Gibbs
subset Gibbs

SGRLD



Example SGRLD segmentation
(zoomed in around a seizure)

SLDS + MCMC



Handling stochastic gradient bias 
in training RNNs



Goal: Low-bias training of RNNs

Hidden 
States

Losses

Inputs

Unrolled recurrent neural network (RNN)



Backpropagation through time (BPTT)

Paper #290 - Adaptively Truncating Backpropagation Through
Time to Control Gradient Bias

Christopher Aicher1 Nicholas J. Foti2 Emily B. Fox1,2

1Department of Statistics, University of Washington
2Paul G. Allen School of Computer Science and Engineering, University of Washington

Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias

References & Acknowledgements

[1] Werbos et al. "Backpropagation Through Time." IEEE (1990).
[2] Miller and Hardt. "Stable recurrent models." ICLR (2019).
[3] Ghadimi and Lan. "Stochastic first-and zeroth-order methods for

nonconvex stochastic programming." SIAM (2013).
[4] Marcus et al. "The Penn treebank" (1993).
[5] Merity et al. "Pointer sentinel mixture models" (2016).
We thank the reviewers for their feedback and members of the Dynamode
lab at UW for their helpful discussions. This work was supported in part by
ONR Grant N00014-18-1-2862 and NSF CAREER Award IIS-1350133.

Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Paper #290 - Adaptively Truncating Backpropagation Through
Time to Control Gradient Bias

Christopher Aicher1 Nicholas J. Foti2 Emily B. Fox1,2

1Department of Statistics, University of Washington
2Paul G. Allen School of Computer Science and Engineering, University of Washington

Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias

References & Acknowledgements
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Stochastic gradient:

SGD using BPTT:



Backpropagation through time (BPTT)
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient
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Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Goal: Address the bias in stochastic gradient descent (SGD)
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Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
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property ˆH(h,x)
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dht≠k

��� vs k during training. Blue is mean over t.
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Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Truncated Backpropagation Through Time:

Truncated Gradient
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Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?
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2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn
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• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
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Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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How to choose K?

How does the bias
affect learning?

What’s the effect of this bias, and 
can we bound it?

Truncate after K steps of BPTT
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then
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≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank
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Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Stochastic gradient: Chain Rule:

key term

2.2 VANISHING AND EXPLODING GRADIENT

Let k · k denote the spectral norm for matrices and Eu-
clidean norm for vectors.

To analyze the bias of ĝK , we are interested in the behav-
ior of @Lt

@ht�k
for large k. Pascanu et al. (2013) observed

@Lt

@ht�k

=
@Lt

@ht

kY

r=1

@ht�r+1

@ht�r

. (4)

In particular, the repeated product of Jacobian matrices
@ht

@ht�1
cause Eq. (4) to tend to explode to infinity or van-

ish to zero. When ✓ has an exploding gradient, then
the bias of ĝK is unbounded. When ✓ has a vanishing
gradient, then the bias of ĝK is small; however if the
gradient decays too rapidly, the RNN cannot learn long-
term dependences (Bengio et al., 1994; Pascanu et al.,
2013; Miller and Hardt, 2019). In practice, LSTMs and
other gated-RNNs have been seen to work in a middle
ground where (for appropriate ✓ and inputs x1:T ) the gate
variables prevent the gradient from exploding or vanish-
ing (Hochreiter and Schmidhuber, 1997; Belletti et al.,
2018). However, gradient bounds, based on the Jacobian
k

@ht
@ht�1

k  �, either explode or vanish
����

@Lt

@ht�k

���� 

����
@Lt

@ht

���� · �
k

. (5)

In light of Eq. (5), several approaches have been pro-
posed in the literature to restrict ✓ to control �.

Unitary training methods have been proposed to restrict
✓ such that � ⇡ 1 for all ✓, but do not bound the bias of
the resulting gradient (Arjovsky et al., 2016; Jing et al.,
2017; Vorontsov et al., 2017).

Stable or Chaos-Free training methods have been pro-
posed to restrict ✓ such that � < 1 (Laurent and von
Brecht, 2017; Miller and Hardt, 2019). In particular,
Miller and Hardt (2019) call an RNN H stable for pa-
rameters ✓ if it is a contraction in h, that is

sup
h,h

02R dh

x2R dx

kH(h, x, ✓)� H(h0
, x, ✓)k

kh � h0k
 � < 1 (6)

and call an RNN H data-dependent stable if the supre-
mum over Eq. (6) is restricted to observed inputs x 2 X .
Let ⇥�-Stable be the set of parameters ✓ satisfying Eq. (6)
and ⇥X

�-Stable be the set of parameters ✓ satisfying the
data-dependent version.

Miller and Hardt (2019) show that if ✓ 2 ⇥�-Stable the
RNN gradients has an exponential forgetting property
(as k

@H

@h
k < �), which prevents the RNN from learn-

ing long-term dependences. We desire conditions on ✓

where we can bound the bias, but are less restrictive than
Eq. (6).

3 THEORY

In this section, we consider bounding the bias in TBPTT
when ✓ satisfies a relaxation of the contraction restriction
Eq. (6). Under this condition and a bound on k@ht/@✓k,
we show that both the absolute bias and relative bias are
bounded and decay geometrically for large K. Finally,
we prove the convergence rate of SGD for gradients with
bounded relative bias. Full proofs of theorems can be
found in the Supplement.

3.1 GEOMETRIC DECAY FOR LARGE LAGS

To reduce notation, we define �k = k
@Ls

@hs�k
k to be the

gradient norm of loss Ls at time s with respect to the
hidden state k lags in the past. Note that �k is a random
variable as s is a random index.

Our relaxation of Eq. (6) is to assume the norm of the
backpropagated gradient �k decays geometrically, on av-

erage for large enough lags k. More formally,

Assumption (A-1). For ✓ fixed, there exists � 2 (0, 1)
and ⌧ � 0 such that

E [�k+1]  � · E [�k] , for all k � ⌧ (7)

This generalizes the vanishing gradient condition to hold
in expectation.

To contrast (A-1) with ✓ 2 ⇥�-Stable, we observe that if
✓ 2 ⇥�-Stable then the gradient norms �k must uniformly

decay exponentially

�k+1  � · �k for all k . (8)

Eq. (7) is less restrictive than Eq. (8) as �k+1  � · �k

only occurs for k > ⌧ and in expectation rather than
uniformly. Denote the set of ✓ that satisfy (A-1) with �, ⌧

for inputs X = x1:T as ⇥X

�,⌧
. Then, we have ⇥�-Stable ✓

⇥X

�-Stable ⇢ ⇥X

�,⌧
for (�, ⌧) = (�, 0). Therefore (A-1)

is a more general condition. For illustration, we present
two examples where ✓ 2 ⇥X

�,⌧
but ✓ /2 ⇥X

�-Stable.

Nilpotent Linear RNN: Consider a simple RNN with
linear activation ht = Wht�1 + Uxt where W is a
nilpotent matrix with index k, that is W

k = 0. Then
@ht/@ht�k = W

k = 0 hence (W, U) 2 ⇥X

0,k; how-
ever the norm k@ht/@ht�kk = kWk can be arbitrar-
ily large, thus (W, U) /2 ⇥�-Stable. For this example,
although H is not stable, k-repeated composition ht =
(H � · · · � H)(ht�k, xt�k+1:t) is stable.

Unstable RNN with Resetting: Consider a generic
RNN with ✓ chosen such that H is unstable, Lipschitz
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt
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·
ˆht≠k
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O(K) compute,
but is biased
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K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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• Restrict ◊ to be stable, that is for some ⁄ < 1
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• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)
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= 0 when x œ X0, then
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If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank
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Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1
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≠1/2 log N
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∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
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)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k
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Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Paper #290 - Adaptively Truncating Backpropagation Through
Time to Control Gradient Bias

Christopher Aicher1 Nicholas J. Foti2 Emily B. Fox1,2

1Department of Statistics, University of Washington
2Paul G. Allen School of Computer Science and Engineering, University of Washington

Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased

Lt�4 Lt�3 Lt�2 Lt�1 Lt
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K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Existing Work: Restrict RNN weights such that 
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased
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ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias

References & Acknowledgements
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t
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dLt

dht≠k≠1
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t
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If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

“Stable” or “Chaos Free” RNN 
[Laurent & von Brecht ‘16, Miller & Hardt ’19]
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).
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SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)
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Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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• Implies uniform bound on error ĝ ≠ ĝK
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions
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Examples:
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Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K
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Adaptive TBPTT Algorithm
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� =
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Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k
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Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m
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• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m
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Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
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100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Goal: Address the bias in stochastic gradient descent (SGD)
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Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
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Relative Bias Bound for TBPTT
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then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n
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min
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Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
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dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k
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Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Implies uniform bound on Implies bound on gradient bias…will see

Bound 
on all 
slopes

Implies RNN has exponentially 
vanishing memory

Bound on 
average 

slope
in tail

Allows long-term dependence
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Assuming:
- Our gradient decay bound holds:                                        .

- is bounded

Then TBPTT has bounded relative bias:

Error analysis: 
Bound on relative bias

Paper #290 - Adaptively Truncating Backpropagation Through
Time to Control Gradient Bias

Christopher Aicher1 Nicholas J. Foti2 Emily B. Fox1,2

1Department of Statistics, University of Washington
2Paul G. Allen School of Computer Science and Engineering, University of Washington

Problem & Background
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ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)
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Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by
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• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased
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K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
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dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1
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dht≠k≠1

����� Æ — · E t
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����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t
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If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Aicher, Foti, Fox, UAI 2019.



Error analysis: 
Convergence rate of SGD with biased grads
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0
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·
ˆht≠k
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0
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·
ˆht≠k
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O(K) compute,
but is biased
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K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
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• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then
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If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank
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Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O
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(1 ≠ ”)≠1
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≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Convergence to 
stationary point

Price of 
bias

Assuming:
- Relative bias at each step bounded by ! < 1 
- Loss is L-smooth and "# has bounded variance

Then SGD with decaying stepsize converges at a rate:
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Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?
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• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
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• Restrict ◊ to be stable, that is for some ⁄ < 1
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• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.
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• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Aicher, Foti, Fox, UAI 2019.
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Paper #290 - Adaptively Truncating Backpropagation Through
Time to Control Gradient Bias

Christopher Aicher1 Nicholas J. Foti2 Emily B. Fox1,2

1Department of Statistics, University of Washington
2Paul G. Allen School of Computer Science and Engineering, University of Washington

Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt

Aicher, Foti, Fox, UAI 2019.
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Perplexity vs. K – comparison

Paper #290 - Adaptively Truncating Backpropagation Through
Time to Control Gradient Bias
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2Paul G. Allen School of Computer Science and Engineering, University of Washington

Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:

ĝ(◊) =
ŒX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(T ) compute

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
KX

k=0

dLt

dht≠k

·
ˆht≠k

ˆ◊

O(K) compute,
but is biased

Lt�4 Lt�3 Lt�2 Lt�1 Lt

ht�4 ht�3 ht�2 ht�1 ht

xt�4 xt�3 xt�2 xt�1 xt

K = 3

Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
�����

dLt

dht≠k≠1

����� Æ ⁄ ·

�����
dLt

dht≠k

����� (A-0)

• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1

E t

�����
dLt

dht≠k≠1

����� Æ — · E t

�����
dLt

dht≠k

����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Problem & Background

Goal: Address the bias in stochastic gradient descent (SGD)
when training recurrent neural networks (RNNs) with gradients
from truncated backpropagation through time (TBPTT).

Backpropagation Through Time (BPTT):

Stochastic Gradient:
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Figure: Backpropagation on the unrolled RNN

SGD with BPTT: ◊n+1 = ◊n ≠ “n · ĝ(◊n)

Truncated Backpropagation Through Time:

Truncated Gradient

ĝK(◊) =
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Figure: BPTT truncated after K = 3 steps

SGD with TBPTT: ◊n+1 = ◊n ≠ “n · ĝK(◊n)

Challenges:

• How to choose the truncation length K?
• How does SGD with bias converge?

Our Contributions

• Assume the RNN satisfies ‘decay in expectation’
• Show this allows the relative bias of TBPTT to be bounded
• Prove a convergence rate SGD with biased gradients
• Adaptively adjust Kn during training to control relative bias
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Gradient Decay Assumptions

Previous Work: Uniform Decay Assumption

• Restrict ◊ to be stable, that is for some ⁄ < 1
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dLt
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����� Æ ⁄ ·
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dLt
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• Implies uniform bound on error ĝ ≠ ĝK

• But implies the RNN has an exponentially vanishing memory.

Our Assumption: Decay in Expectation

• We instead assume for some — < 1
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����� for all k Ø · (A-1)

• Implies bounds on gradient bias (Theorem 1)
• Allows for long term dependence
• Assumption (A-1) is a weaker condition than (A-0).

Comparison of Assumptions

(A-0) (A-1)

Examples:

• Unstable RNN with Resetting:
If the RNN H is unstable (with ⁄ > 1), but with a resetting
property ˆH(h,x)

ˆh
= 0 when x œ X0, then

E t

�����
dLt

dht≠k≠1

����� Æ Pr(xt:t≠k /œ X0) · ⁄ · E t

�����
dLt

dht≠k

����� .

If Pr(xt:t≠k œ X0) > 1 ≠ —⁄
≠1 for some — < 1, then the RNN

satisfies (A-1) but not (A-0).

• LSTM on Penn treebank

1 Epoch 10 Epochs 40 Epochs

Figure: Gradient Norms:
��� dLt

dht≠k

��� vs k during training. Blue is mean over t.

∆ Decay on average, but individual traces do not
∆ Decay rate varies during training

Error Analysis

Relative Bias Bound for TBPTT

• Theorem 1. If (A-1) holds and ˆH/ˆ◊ is bounded,
then the relative bias is bounded by

ÎE [ĝK(◊)] ≠ g(◊)Î
Îg(◊)Î Æ �(K, ◊) = O(—K≠·) .

∆ relative bias decays exponentially in K

Convergence Rate of SGD with Biased Gradients

• Theorem 2. If the relative bias at each step is bounded by
” < 1, the loss is L-smooth and ĝ has bounded variance ‡

2,
then SGD, with decaying stepsize “n = “ · n

≠1/2

min
n=1,...,N

Îg(◊n)Î2 = O

⇣
(1 ≠ ”)≠1

· N
≠1/2 log N

⌘

∆ price of bias is (1 ≠ ”)≠1

Adaptive TBPTT Algorithm

We adaptively select Kn to bound the relative bias �̂(Kn, ◊) < ”

Estimating Decay Rate —, ·

• We run TBPTT with R steps over a minibatch S

� =
(�����

dLt

dht≠k

����� : t œ S, k Æ R

)

• Calculate —̂ using regression over log ÎdLt/dht≠kÎ

Estimating Truncation Level Kn

• Given —̂ and �, estimate the relative bias �̂(K) for each K

• Set Kn to control target bias ” according to �̂(K)

Runtime Analysis

• One epoch is O(T ) time, � takes O(R) additional time
• Periodically update K, so overall O(T + –R) time

What If Assumptions are Violated?

• If ◊n does not satisfy (A-1) or Ÿ̂(”) is larger than our
computationally budget, then we use Kn = Kmax.

• We assume the stationary points of interest ◊
ú do

satisfy (A-1), so that eventually our theory applies.

Experiments

Synthetic Copy Input: ACBBAB#––––-

Output: ––––––ACBBAB

• Fixed Copy Length of 10, 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Variable Copy Lengths over [5, 10], 2-Layer LSTM, T = 256k

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Language Modeling

• Penn treebank [4], 1-Layer LSTM, T ¥ 1m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

• Wikitext-2 [5], 1-Layer LSTM, T ¥ 2m

Figure: Test Error, Truncation Length Kn, Relative Bias �̂ vs Epoch.

Table: Perplexity (PPL) for Penn treebank (left) and Wikitext-2 (right).
Parentheses is standard deviation over multiple initializations.

Penn treebank
K Valid PPL Test PPL
10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
” = 0.9 100.1 (0.5) 99.0 (0.5)
” = 0.5 90.1 (0.4) 89.5 (0.3)
” = 0.1 88.1 (0.2) 87.2 (0.2)

Wikitext-2
K Valid PPL Test PPL
10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)

” = 0.9 130.0 (1.3) 124.1 (2.2)

” = 0.5 127.2 (0.7) 121.7 (0.6)

” = 0.1 127.5 (0.6) 121.9 (1.2)

Comments? Questions? Email: aicherc@uw.edu

Code at github.com/aicherc/adaptive_tbptt
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Interpretable 
interactions

Modeling 
sparsely sampled, 
nonstationary time 

series

Handling bias in 
stochastic gradients 
of sequential data

Summary
1. Deep learning offers tremendous opportunities for modeling complex 

dynamics, but problems much vaster than prediction + large corpora

2. Scaling learning is possible, but have to think
carefully about broken dependencies (bias)

Elliott Bay

Lake
Union

Green
Lake

P 
  u

   
g 

  e
   

t
S 

 o
   

u 
  n

   
d

Bitter
  Lake

Haller
 Lake

L 
 a 

 k 
 e 

  W
  a

  s
  h

  i
  n

  g
  t

  o
  n

?È

!"b$

!"̀$

?É

?Ê

?Ã

?Â

!"̀$

?Â

?À

?Â

?Â

?Ç

260.01

RAIN
IER

 AVE S

15
TH

 A
V

E
 N

E

S SPOKANE ST

AU
R

O
R

A 
AV

E
 N

S SNOQUALMIE ST

35
TH

 A
V

E
 N

E

NE 85TH ST

35
TH

 A
V

E
 S

W

13
TH

 A
V

E
 S

BE
A

C
O

N
 AV

E
 S

M
 L K

IN
G

 JR
 W

AY S

16
TH

 A
V

E
 S

W

LA
KE

 C
IT

Y 
W

AY
 N

E

D
E

LR
ID

G
E

 W
AY

 S
W

RENTON AVE S

S HINDS ST

SAND P
OIN

T W
AY N

E

G
R

EE
N

W
O

O
D

 A
V

E
 N

3R
D

 A
V

E
 N

W

5TH AVE

14
TH

 A
V

E
 N

W

23
R

D
 A

V
E

 S

8T
H

 A
VE

 N
W

E M
ADIS

ON S
T

54
TH

 A
V

E
 S

W

20
TH

 A
V

E
 N

W

25
TH

 A
V

E
 N

E

NW 85TH ST

AL
KI A

VE S
W

39
TH

 A
V

E
 S

W

M
E

LR
O

S
E

 A
V

E
 E

24
TH

 A
V

E
 N

W

ROY ST

EAST MARGINAL WAY S

30
TH

 A
V

E
 W

S JUDKINS ST

23
R

D
 A

V
E

WEST SEATTLE BR

SW FINDLAY ST

M
INO

R AVE

S JACKSON ST

NE 75TH ST

SW ADMIRAL WAY

NE 125TH ST

N 50TH ST

34
TH

 A
V

E
 W

NE 45TH ST

15
TH

 A
V

E
 E

24
TH

 A
V

E
 N

W

NW MARKET ST

NE 100TH ST

DENNY WAY

N 145TH ST

N 130TH ST

10
TH

 A
V

E
 E

W
E

S
T M

A
R

G
IN

A
L W

AY
 SW

MERCER ST

S GRAHAM ST

3RD AVE

H
A

R
B

O
R

 AV
E

 SW

NW 60TH ST

E UNION ST

SW ROXBURY ST

OLIVE WAY

E GALER ST

51
ST

 A
VE

 S

ELLIOTT AVE W

AU
R

O
R

A 
AV

E
 N

SW
IFT AVE S

4T
H

 A
VE

 W

E DENNY WAY

W DRAVUS ST

SU
R

B
E

R
 D

R
 N

E

5T
H

 A
VE

 N
E

SE
AV

IE
W

 A
V

E
 N

W

R
O

O
S

EV
E

LT
 W

AY
 N

E

SW BARTON ST

G
R

EE
N

W
O

O
D

 A
V

E
 N

3R
D

 A
V

E
 W

1S
T 

AV
E

 N
W

HOLMAN RD NW

N 41ST ST

W GOVERNMENT WAY

AIRPORT W
AY S

W
E

S
TL

A
K

E
 A

V
E

 N

NE 115TH ST

S GENESEE ST

LEARY W
AY NW

YESLER WAY

TH
O

RN
DY

KE
 A

VE
 W

1S
T 

AV
 S

W MCGRAW ST

12
TH

 A
V

E
 S

NE PACIFIC ST

S NORFOLK ST

N
O

B 
H

IL
L 

AV
E

 N

W GALER ST

N 37TH ST

SW THISTLE ST

MAGNOLIA BR

SW HOLDEN ST

31
ST

 A
VE

S DEARBORN ST

W EMERSON ST

N 105TH ST

BA
LL

A
R

D
 B

R

46
TH

 A
V

E
 S

NE 65TH ST

S BAYVIEW ST

1S
T 

AV
E

 N
E

E MARION ST

M
YER

S W
AY S

49
TH

 A
V

E
 S

W

20
TH

 A
V

E
 N

E

NE 105TH ST

S KENYON ST

S HOLGATE ST

G
ILM

AN
 D

R
 W

45
TH

 A
V

E
 N

E

BR
O

A
D

W
AY

 E

HIL
LS

ID
E 

DR E

WALL S
T

OLS
ON P

L S
W

E LYNN ST

S MYRTLE ST

NW 70TH ST

6TH
 AVE N

M
E

R
ID

IA
N

 A
V

E
 N

S LUCILE ST

SW OREGON ST

27
TH

 A
V

E
 W

N 95TH ST

RAIN
IER

 AVE S

45
TH

 A
V

E
 S

W

SW 106TH ST

50
TH

 A
V

E
 N

E

S ALASKA ST

14
TH

 A
V

E
 W

AI
R

P
O

R
T 

W
AY

 S

S DAWSON ST

30
TH

 A
V

E
 N

E

SA
N

D
 P

O
IN

T W
AY N

E

ROOSEVELT WAY N

N 137TH ST

N 107TH ST

FR
E

M
O

N
T 

AV
E

 N

W
A

LL
IN

G
FO

R
D

 A
V

E
 N

MARION ST

SW TRENTON ST

30
TH

 A
V

E
 S

W

SW MYRTLE ST

E ROY ST

AR
B

O
R

E
TU

M
 D

R
 E

12
34.01

4.02

5

6
7

8
9101112

13

14

15
16

17.01

17.02

18
19

20 21

22

2425
26

2728293031

32 33
34

35

36
38 39 40

41

42
43.01

43.02

4445
46

47

48

49

50
51 52

53.01

53.02

54

56

57

58.01

58.02

59

60 61

62

63

6465

6667
6869

70

71

72
73

74.01

74.02
75

76
77

7879
80.01

80.02

81

82 83

84

85
86 87 88

89
9091

92

93

94

95

96

97.01
97.02 98

99

100.01

100.02

101

102103
104.01104.02

105

106

107.01

107.02 108
109

110.01

110.02 111.01 111.02

112113
114.01

114.02

115116

117
118

119

120

121

264265

Census 2010
Seattle, Washington

Census Tracts

Note:
Tracts 260.01, 264 and 265 
extend beyond Seattle city 
limits. Only the portion of each 
tract within city limits
is shown here.

Data Source:
Census 2010 TIGER/Line 
Redistricting Data
U.S. Census Bureau

No warranties of any sort, including
accuracy, fitness, or merchantability
accompany this product.

0 0.5 1 1.5 20.25
Miles

F

!(t)



Nick Foti
(Research Scientist,

now at Apple)

Alex Tank
(Stat PhD,

now at Voleon)

Credit for the hard work…

Ian Covert 
(CSE PhD)

Sam Ainsworth 
(CSE PhD)

Shirley You Ren
(Stat PhD, 

now at Apple)

Chris Glynn
(Postdoc, 

Asst Prof at UNH)

Chris Aicher
(Stat PhD)

Yian Ma
(AMath PhD,

postdoc at Berkeley)


