W

Flexibility, interpretability, and scalability in time series modeling

Emily Fox
University of Washington
Computer Science \& Engineering (CSE) and Statistics

Modern sources of time series

Until recently, ML (mostly) ignored time series

It's hard!

\# parameters (naively) grows rapidly with

- \# of series
- complexity of dynamics captured

More data

Algorithms more computationally intensive

Theory not applicable because typically assume no time dependencies

Now time series are "in"

But, success also relies on...

Lots of replicated
 series

- Lots of correspondence data
- Lots of trials of a robot navigating every part of the maze
- Lots of transcribed audio

Inferring brain networks:
Costly data collection, significant subject-to-subject variability

But, success also relies on...

Lots of replicated
series
- Lots of correspondence data
Lots of trials of a robot navigating every part of the maze
- Lots of transcribed audio

Demand forecasting of new item: Tons of data, but not for question of interest

But, success also relies on...

Lots of replicated
series
- Lots of correspondence data
- Lots of trials of a robot navigating every part of the maze
- Lots of transcribed audio

Rare disease (or event) modeling:
Need to focus on tails of distribution

But, success also relies on...

Changing context (non-stationarity): Patient recovering or deteriorating, event-driven changes, etc.

But, success also relies on...

Few, low-trustworthy labels

No clear prediction metric

Interpretable interactions

Modeling
sparsely sampled, nonstationary time series

Handling bias in stochastic gradients of sequential data

Granger causality:
 Directed, lagged interactions in time series

Why are interactions important?

Functional networks in the brain

Gene regulatory networks

Granger causality selection - Linear model

Series i does not Granger cause series jiff $A_{\mathrm{ji}, \mathrm{k}}=0 \quad \forall \mathrm{k}$

Granger causality selection - Linear model

$\begin{array}{lll}x_{t} & A_{1} & x_{t-1}\end{array}$
$A_{2} \quad X_{t-2}$
e_{t}

$$
\min _{A_{1}, \ldots, A_{K}} \underbrace{\sum_{t=K}^{T}\left(x_{t}-\sum_{k=1}^{K} A_{k} x_{t-k}\right)^{2}}_{\text {reconstruction error }}+\lambda \underbrace{\sum_{i j}\left\|\left(A_{j i, 1}, \ldots, A_{j i, K}\right)\right\|_{2}}_{\text {group lasso penalty }}
$$

The issue with a linear approach

maintain

Functional networks in the brain
Gene regulatory networks

Modeling nonlinear dynamics

Identifying Granger causality

Using penalized neural networks

Penalized multilayer perceptron (MLP)

Penalized multilayer perceptron (MLP)

series j does not Granger cause series i if group j weights are 0
place group-wise penalty on layer 1 weights

group inputs by:

(K lags of series j)

Penalized multilayer perceptron (MLP)

Lag selection via hierarchical group lasso

$$
\min _{\mathbf{w}} \sum_{t=K}^{T}\left(x_{i t}-g_{i}\left(x_{(t-1):(t-K)}\right)\right)^{2}
$$

hierarchical
group lasso penalty

Weights of the LSTM

$W=\left(\left(W^{f}\right)^{T},\left(W^{i n}\right)^{T},\left(W^{o}\right)^{T},\left(W^{c}\right)^{T}\right)$ define effect of input on prediction

forget gate $\quad f_{t}=\sigma\left(W^{f} x_{t}+U^{f} h_{(t-1)}\right)$
input gate $\quad i_{t}=\sigma\left(W^{i n} x_{t}+U^{i n} h_{(t-1)}\right)$
output gate $\quad o_{t}=\sigma\left(W^{o} x_{t}+U^{o} h_{(t-1) i}\right)$
$\begin{gathered}\text { cell state } \\ \text { evolution }\end{gathered} \quad c_{t}=f_{t} \odot c_{t-1}+i_{t} \odot \sigma\left(W^{c} x_{t}+U^{c} h_{(t-1)}\right)$
hidden state $h_{t}=o_{t} \odot \sigma\left(c_{t}\right)$
evolution

A penalized LSTM

$W=\left(\left(W^{f}\right)^{T},\left(W^{i n}\right)^{T},\left(W^{o}\right)^{T},\left(W^{c}\right)^{T}\right)$ define effect of input on prediction

series j does not Granger cause series if j th column of weights W is 0

$$
\min _{W, U, w^{O}} \underbrace{\sum_{t=2}^{T}\left(x_{i t}-g_{i}\left(x_{<t}\right)\right)^{2}}_{\text {reconstruction error }}+\lambda \underbrace{\lambda \sum_{j=1}^{p}\left\|W_{: j}\right\|_{2}}_{\text {group lasso penalty }}
$$

DREAM3 challenge

Difficult non-linear dataset used to benchmark Granger causality detection

Simulated gene expression and regulation dynamics for:

- 2 E.Coli and 3 Yeast
- 100 series (network size)
- 46 replicates

Very different structures

- 21 time points

Structure extracted from currently established gene regulatory networks

DREAM3 results

\% AUROC

Capturing contemporaneous interactions via structured deep generative models

Interpretable interactions

Modeling
sparsely sampled, nonstationary time series

Handling bias in stochastic gradients of sequential data

Census tracts in Seattle, WA

What is the value of housing in each region over time?

Challenge: Spatiotemporally sparse data

Average \# of monthly house sales

Challenge: Spatiotemporally sparse data

Tract 281980

Tract 340184

Single census tract model

$$
\begin{aligned}
& x_{t, i}^{\text {tract } i}=a_{i} x_{t-1, i}+\epsilon_{t, i} \quad \epsilon_{t, i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right) \\
& y_{t, i, l}=x_{t, i}+\sum_{h=1}^{H} \beta_{i, h} U_{l, r}+v_{t, i, l} \quad v_{t, i, l} \sim \mathcal{N}\left(0, R_{i}\right) \\
&{ }_{\text {th }} \text { sales } \\
& \text { house-level features }
\end{aligned}
$$

Cluster and correlate multiple time series

Ren, Fox, Bruce, Annals of Applied Statistics 2017

Seattle City analysis

Robustness to even finer scales

Heuristically defined neighborhoods

Smaller than census tracts

5\% improvement
 in predictive
 performance!

Another data-scarce study: Dynamics of homelessness

Goals:

- Studying time-varying homeless populations locally
- Infer effect of increases in rent to homelessness rate
- Forecast future homeless population for decision-making
- Robustly quantify uncertainty

Data challenges:

- Counts occur on single night
- Count method varies from metro to metro and across time
- Observe most in shelters and Ponly fraction on the streets ${ }^{1} T$ OF HOMELESS PERSONS \% sheltered varies widely between metros

Per-metro count-based dynamical model

Benefits over past approaches...

Benefits over past approaches...

(Nonstationary) population dynamics
Noisy census counts (observed)
Log odds of homelessness regressed on Zillow Rent Index (ZRI)

Total \# homeless (unobserved)
Count accuracy
Counted \# homeless (observed)

Benefits over past approaches...

Benefits over past approaches...

Adjusting for dynamics of count accuracy and total population, is homelessness rate increasing?

If rent increases x\%, do \# homeless increase?

Typically weak relationship + wide uncertainty intervals

Past methods overly confident. . .ignore noise in homeless count and census data

Interpretable interactions

Modeling
sparsely sampled, nonstationary time series

Handling bias in stochastic gradients of sequential data

Recap: Mechanisms for coping with limited data

clusters and hierarchies

low-dimensional embeddings

sparse directed interactions

switching between simpler dynamics

Interpretable interactions

Modeling
sparsely sampled, nonstationary time series

Handling bias in stochastic gradients of sequential data

Discrete-time state space models

Smoothing/ Filtering

Forecasting

Examples: HMMs, AR-HMMs, linear Gaussian state space models, switching linear dynamical systems, nonlinear state space models, ...

Learning challenge for SSMs

$$
\log \operatorname{Pr}(y, u \mid \theta)=\sum_{t} \underbrace{\log \operatorname{Pr}\left(y_{t} \mid u_{t}, \theta\right.}_{\text {Emissions }})+\underbrace{\log \operatorname{Pr}\left(u_{t} \mid u_{t-1}\right.}_{\text {Transitions }}, \theta)
$$

$$
\log \operatorname{Pr}(y \mid \theta)=\sum_{t} \log \operatorname{Pr}\left(y_{t} \mid y_{<t}, \theta\right)
$$

Fisher's Identity:

$$
\nabla_{\theta} \log \operatorname{Pr}(y \mid \theta)=\underbrace{\mathbb{E}_{u \mid y, \theta}}_{\text {Expectation conditioned on full sequence }}\left[\nabla_{\theta} \log \operatorname{Pr}(y, u \mid \theta)\right]
$$

Algorithms for SSMs

Stochastic gradients + SSMs

Issue with naïve approach...

A naïve stochastic gradient for SSMs

Fisher's Identity:

$$
\begin{aligned}
\nabla_{\theta} \log \operatorname{Pr}(y \mid \theta) & =\mathbb{E}_{u \mid y, \theta}\left[\nabla_{\theta} \log \operatorname{Pr}(y, u \mid \theta)\right] \\
& =\sum_{t=1}^{T} \underbrace{\mathbb{E}_{u \mid y, \theta}}_{\underbrace{}}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{t}, u_{t} \mid u_{t-1}, \theta\right)\right]
\end{aligned}
$$

Naive gradient estimator:

$$
\nabla_{\theta} \widehat{\log \operatorname{Pr}}(y \mid \theta)=\operatorname{Pr}(\mathcal{S})^{-1} \cdot \sum_{t \in \mathcal{S}} \mathbb{E}_{\underbrace{u \mid y_{\mathcal{S}}, \theta}}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{t}, u_{t} \mid u_{t-1}, \theta\right)\right]
$$

An unbiased, but impractical alternative

Fisher's Identity:

$$
\begin{aligned}
\nabla_{\theta} \log \operatorname{Pr}(y \mid \theta) & =\mathbb{E}_{u \mid y, \theta}\left[\nabla_{\theta} \log \operatorname{Pr}(y, u \mid \theta)\right] \\
& =\sum_{t=1}^{T} \mathbb{E}_{u \mid y, \theta}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{t}, u_{t} \mid u_{t-1}, \theta\right)\right]
\end{aligned}
$$

Unbiased gradient estimator:

$$
\nabla_{\theta} \widehat{\log \operatorname{Pr}(y \mid \theta)=\operatorname{Pr}(\mathcal{S})^{-1} \cdot \sum_{t \in \mathcal{S}} \underbrace{}_{\substack{\text { Requires message } \\
\mathbb{E}_{u \mid y, \theta}}}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{t}, u_{t} \mid u_{t-1}, \theta\right)\right]} \text { passing over full } \begin{aligned}
& \text { sequence } \bigcirc(|T|)
\end{aligned}
$$

Buffering for approximate unbiasedness

"Buffered" gradient estimator:

$$
\begin{aligned}
& \nabla_{\theta}\widetilde{\log \operatorname{Pr}(y} \mid \theta)=\operatorname{Pr}(\mathcal{S})^{-1} \cdot \sum_{t \in \mathcal{S}} \\
& \underbrace{}_{\begin{array}{c}
\text { Computation } \mathcal{O} \\
\mathbb{E}_{u \mid y_{S^{*}, \theta}}
\end{array}}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{t}, u_{t} \mid u_{t-1}, \theta\right)\right]
\end{aligned}
$$

Error analysis

exact posterior $\quad \gamma(u)=\operatorname{Pr}\left(u \mid y_{\mathcal{T}}, \theta\right)$ approx posterior $\widetilde{\gamma}(u)=\operatorname{Pr}\left(u \mid y_{\mathcal{S}^{*}}, \theta\right)$

Theorem 1. Let $\epsilon_{1}=\max \left\{\mathcal{W}_{1}\left(\gamma_{-B}, \tilde{\gamma}_{-B}\right), \mathcal{W}_{1}\left(\gamma_{S+B}, \tilde{\gamma}_{S+B}\right)\right\}$. If the gradient is Lipschitz in u with constant L_{U} and the forward and backward smoothing kernels are contractions with constant $L<1$, then

$$
\left\|\mathbb{E}_{\gamma}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{\mathcal{S}}, u_{\mathcal{S}} \mid \theta\right)\right]-\mathbb{E}_{\tilde{\gamma}}\left[\nabla_{\theta} \log \operatorname{Pr}\left(y_{\mathcal{S}}, u_{\mathcal{S}} \mid \theta\right)\right]\right\|_{2} \leq
$$

$$
4 L_{U} \cdot \frac{1-L^{S}}{1-L} \cdot L^{B} \cdot \epsilon_{1}
$$

Geometrically in B

Aicher, Ma, Foti, Fox, to appear in SIAM Journal on Mathematics of Data Science.

Canine iEEG analysis

16 channels, 90 seizures

grab out 4 mins @ 200Hz per channel per seizure $\rightarrow 70$ million time points

Example SGRLD segmentation

 (zoomed in around a seizure)
SLDS + MCMC

Example SGRLD segmentation (zoomed in around a seizure)

Handling stochastic gradient bias

 in training RNNs
Goal: Low-bias training of RNNs

Unrolled recurrent neural network (RNN)

Backpropagation through time (BPTT)

Stochastic gradient.

$$
\theta_{n+1}=\theta_{n}-\gamma_{n} \cdot \hat{g}\left(\theta_{n}\right)
$$

Backpropagation through time (BPTT)

Stochastic gradient:

$$
\hat{g}(\theta)=\sum_{k=0}^{\infty} \frac{d L_{t}}{d h_{t-k}} \cdot \frac{\partial h_{t-k}}{\partial \theta}
$$

SGD using BPTT:

$$
\theta_{n+1}=\theta_{n}-\gamma_{n} \cdot \hat{g}\left(\theta_{n}\right)
$$

O(T) computation time and memory

Truncated backpropagation through time (TBPTT)

Stochastic gradient:
$\hat{g}_{K}(\theta)=\sum_{k=0}^{K} \frac{d L_{t}}{d h_{t-k}} \cdot \frac{\partial h_{t-k}}{\partial \theta}$

SGD using TBPTT:

$$
\theta_{n+1}=\theta_{n}-\gamma_{n} \cdot \hat{g}_{K}\left(\theta_{n}\right)
$$

Truncate after K steps of BPTT

Biased!
$\mathrm{O}(\mathrm{K})$ computation time and memory

What's the effect of this bias, and can we bound it?

How to choose K?

How does the bias affect learning?

Truncate after K steps of BPTT

Gradient decay assumptions

Stochastic gradient:

$$
\hat{g}(\theta)=\sum_{k=0}^{\infty} \frac{d L_{t}}{d h_{t-k}} \cdot \frac{\partial h_{t-k}}{\partial \theta} \quad \frac{\partial L_{t}}{\partial h_{t-k}}=\frac{\partial L_{t}}{\partial h_{t}} \prod_{r=1}^{k} \underbrace{\frac{\partial h_{t-r+1}}{\partial h_{t-r}}}_{\text {key term }}
$$

Existing Work: Restrict RNN weights such that

$$
\left\|\frac{\partial h_{t-r+1}}{\partial h_{t-r}}\right\| \leq \lambda<1 \longrightarrow\left\|\frac{d L_{t}}{d h_{t-k-1}}\right\| \leq \lambda \cdot\left\|\frac{d L_{t}}{d h_{t-k}}\right\|
$$

"Stable" or "Chaos Free" RNN
[Laurent \& von Brecht '16, Miller \& Hardt '19]

Gradient decay assumptions

Previously:

$$
\left\|\frac{d L_{t}}{d h_{t-k-1}}\right\| \leq \lambda \cdot\left\|\frac{d L_{t}}{d h_{t-k}}\right\|
$$

 vanishing memory

$$
\operatorname{lag} k
$$

Implies uniform bound on $\hat{g}-\hat{g}_{K}$

Our relaxed assumption:
$\mathbb{E}_{t}\left\|\frac{d L_{t}}{d h_{t-k-1}}\right\| \leq \beta \cdot \mathbb{E}_{t}\left\|\frac{d L_{t}}{d h_{t-k}}\right\|$ for all $k \geq \tau$

Implies bound on gradient bias... will see

Example: LSTM on language modeling task

 Penn Treebank dataset

Decay on average, but individual traces do not

Error analysis:
 Bound on relative bias

Assuming:

- Our gradient decay bound holds: $\mathbb{E}_{t}\left\|\frac{d L_{t}}{d h_{t-k-1}}\right\| \leq \beta \cdot \mathbb{E}_{t}\left\|\frac{d L_{t}}{d h_{t-k}}\right\|$ for all $k \geq \tau$
- $\partial H / \partial \theta$ is bounded

Then TBPTT has bounded relative bias:

$$
\delta=\frac{\left\|\mathbb{E}\left[\hat{g}_{K}(\theta)\right]-g(\theta)\right\|}{\|g(\theta)\|} \leq \mathcal{O (\beta ^ { K - \tau })}
$$

Relative
bias

Error analysis:
 Convergence rate of SGD with biased grads

Assuming:

- Relative bias at each step bounded by $\delta<1$
- Loss is L-smooth and \hat{g} has bounded variance

Then SGD with decaying stepsize $\gamma_{n}=\gamma \cdot n^{-1 / 2}$ converges at a rate:

Example: LSTM on language modeling task

 Penn Treebank dataset

For fixed K, relative bias increases during training (in this example)

Adaptive TBPTT algorithm

$\mathbb{E}_{t}\left\|\frac{d L_{t}}{d h_{t-k-1}}\right\| \leq \beta \cdot \mathbb{E}_{t}\left\|\frac{d L_{t}}{d h_{t-k}}\right\|$ for all $k \geq \tau$

TBPTT: Text Example

Data: "... no it was n't black monday 2 but while the new york stock exchange did n't fall apart friday as the dow jones industrial average plunged ..."

Penn Treebank, 1-Layer LSTM*

Perplexity vs. K - comparison

Penn treebank		
K	Valid PPL	Test PPL
10	$99.7(0.6)$	$99.9(0.8)$
50	$110.4(0.4)$	$110.8(0.8)$
100	$116.2(0.5)$	$116.9(0.5)$
200	$125.2(1.2)$	$126.1(0.9)$
300	$161.5(0.5)$	$161.2(0.3)$
$\delta=0.9$	$100.1(0.5)$	$99.0(0.5)$
$\delta=0.5$	$90.1(0.4)$	$89.5(0.3)$
$\delta=0.1$	$88.1(0.2)$	$\mathbf{8 7 . 2}(0.2)$

Wikitext-2		
K	Valid PPL	Test PPL
10	$144.2(0.4)$	$136.5(1.3)$
50	$133.4(2.9)$	$127.2(2.8)$
100	$134.4(0.3)$	$127.8(0.5)$
200	$130.3(1.1)$	$124.6(0.7)$
300	$129.6(1.4)$	$124.0(2.2)$
$\delta=0.9$	$130.0(1.3)$	$124.1(2.2)$
$\delta=0.5$	$127.2(0.7)$	$121.7(0.6)$
$\delta=0.1$	$127.5(0.6)$	$121.9(1.2)$

Summary

1. Deep learning offers tremendous opportunities for modeling complex dynamics, but problems much vaster than prediction + large corpora
2. Scaling learning is possible, but have to think carefully about broken dependencies (bias)

Modeling sparsely sampled nonstationary time series

Handling bias in
stochastic gradients
of sequential data

Credit for the hard work...

Chris Aicher (Stat PhD)

Chris Glynn
(Postdoc,
(AMath PhD,
Asst Prof at UNH) postdoc at Berkeley)

lan Covert (CSE PhD)

Alex Tank
(Stat PhD, now at Voleon)

Nick Foti (Research Scientist, now at Apple)

Shirley You Ren (Stat PhD, now at Apple)

